

Python
STARTING OUT WITH

®Python
Second Edit ion

This page intentionally left blank

Addison-Wesley
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Second Edit ion

Tony Gaddis
Haywood Community College

Python
STARTING OUT WITH

Python®

ISBN 10: 0-13-257637-6
ISBN 13: 978-0-13-257637-6

Vice President and Editorial Director, ECS: Marcia Horton
Editor-in-Chief: Michael Hirsch

Editorial Assistant: Stephanie Sellinger
Vice President, Marketing: Patrice Jones

Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti

Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb

Production Project Manager: Kayla Smith-Tarbox
Manufacturing Buyer: Lisa McDowell

Art Director: Linda Knowles
Cover Designer: Joyce Cosentino Wells/JWells Design

Cover Image: © Digital Vision
Media Editor: Dan Sandin/Wanda Rockwell

Project Management: Sherill Redd, Aptara®, Inc.
Composition and Illustration: Aptara®, Inc.

Printer/Binder: Edwards Brothers
Cover Printer: LeHigh-Phoenix Color/Hagerstown

Credits and acknowledgments borrowed from other sources and reproduced, with permission, appear on the
Credits page in the endmatter of this textbook.

Copyright © 2012, 2009 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved.
Manufactured in the United States of America. This publication is protected by Copyright, and permission
should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission(s) to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed in initial caps or all caps and appear on the Trademark Information page in
the endmatter of this textbook.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.
Starting out with Python / Tony Gaddis.—2nd ed.
p. cm.

Includes index.
ISBN-13: 978-0-13-257637-6
ISBN-10: 0-13-257637-6
1. Python (Computer program language) I. Title.
QA76.73.P98G34 2012
005.13'3—dc22

2011002923

10 9 8 7 6 5 4 3 2 1—EB—14 13 12 11 10

www.pearsonhighered.com

Preface xi

Chapter 1 Introduction to Computers and Programming 1

Chapter 2 Input, Processing, and Output 31

Chapter 3 Simple Functions 81

Chapter 4 Decision Structures and Boolean Logic 117

Chapter 5 Repetition Structures 157

Chapter 6 Value-Returning Functions and Modules 203

Chapter 7 Files and Exceptions 239

Chapter 8 Lists and Tuples 295

Chapter 9 More About Strings 341

Chapter 10 Dictionaries and Sets 371

Chapter 11 Classes and Object-Oriented Programming 421

Chapter 12 Inheritance 483

Chapter 13 Recursion 509

Chapter 14 GUI Programming 529

Appendix A Installing Python 567

Appendix B Introduction to IDLE 569

Appendix C The ASCII Character Set 577

Appendix D Answers to Checkpoints 579

Index 595

Contents at a Glance

v

This page intentionally left blank

Preface xi

Chapter 1 Introduction to Computers and Programming 1

1.1 Introduction 1
1.2 Hardware and Software 2
1.3 How Computers Store Data 8
1.4 How a Program Works 13
1.5 Using Python 20

Chapter 2 Input, Processing, and Output 31

2.1 Designing a Program 31
2.2 Input, Processing, and Output 35
2.3 Displaying Output with the print Function 36
2.4 Comments 39
2.5 Variables 40
2.6 Reading Input from the Keyboard 49
2.7 Performing Calculations 53
2.8 More About Data Output 65

Chapter 3 Simple Functions 81

3.1 Introduction to Functions 81
3.2 Defining and Calling a Function 83
3.3 Designing a Program to Use Functions 89
3.4 Local Variables 95
3.5 Passing Arguments to Functions 97
3.6 Global Variables and Global Constants 107

Chapter 4 Decision Structures and Boolean Logic 117

4.1 The if Statement 117
4.2 The if-else Statement 125
4.3 Comparing Strings 130
4.4 Nested Decision Structures and the if-elif-else Statement 134
4.5 Logical Operators 142
4.6 Boolean Variables 149

Contents

vii

viii Contents

Chapter 5 Repetition Structures 157

5.1 Introduction to Repetition Structures 157
5.2 The while Loop: a Condition-Controlled Loop 158
5.3 The for Loop: a Count-Controlled Loop 167
5.4 Calculating a Running Total 179
5.5 Sentinels 182
5.6 Input Validation Loops 185
5.7 Nested Loops 190

Chapter 6 Value-Returning Functions and Modules 203

6.1 Introduction to Value-Returning Functions:
Generating Random Numbers 203

6.2 Writing Your Own Value-Returning Functions 214
6.3 The math Module 225
6.4 Storing Functions in Modules 228

Chapter 7 Files and Exceptions 239

7.1 Introduction to File Input and Output 239
7.2 Using Loops to Process Files 256
7.3 Processing Records 263
7.4 Exceptions 276

Chapter 8 Lists and Tuples 295

8.1 Sequences 295
8.2 Introduction to Lists 295
8.3 List Slicing 303
8.4 Finding Items in Lists with the in Operator 306
8.5 List Methods and Useful Built-in Functions 307
8.6 Copying Lists 314
8.7 Processing Lists 316
8.8 Two-Dimensional Lists 328
8.9 Tuples 332

Chapter 9 More About Strings 341

9.1 Basic String Operations 341
9.2 String Slicing 349
9.3 Testing, Searching, and Manipulating Strings 353

Chapter 10 Dictionaries and Sets 371

10.1 Dictionaries 371
10.2 Sets 394
10.3 Serializing Objects 406

Chapter 11 Classes and Object-Oriented Programming 421

11.1 Procedural and Object-Oriented Programming 421
11.2 Classes 425
11.3 Working with Instances 442
11.4 Techniques for Designing Classes 464

Contents ix

Chapter 12 Inheritance 483

12.1 Introduction to Inheritance 483
12.2 Polymorphism 498

Chapter 13 Recursion 509

13.1 Introduction to Recursion 509
13.2 Problem Solving with Recursion 512
13.3 Examples of Recursive Algorithms 516

Chapter 14 GUI Programming 529

14.1 Graphical User Interfaces 529
14.2 Using the tkinter Module 531
14.3 Display Text with Label Widgets 534
14.4 Organizing Widgets with Frames 537
14.5 Button Widgets and Info Dialog Boxes 540
14.6 Getting Input with the Entry Widget 543
14.7 Using Labels as Output Fields 546
14.8 Radio Buttons and Check Buttons 554

Appendix A Installing Python 567

Appendix B Introduction to IDLE 569

Appendix C The ASCII Character Set 577

Appendix D Answers to Checkpoints 579

Index 595

This page intentionally left blank

Welcome to Starting Out with Python, Second Edition. This book uses the Python language
to teach programming concepts and problem-solving skills, without assuming any previous
programming experience. With easy-to-understand examples, pseudocode, flowcharts, and
other tools, the student learns how to design the logic of programs and then implement
those programs using Python. This book is ideal for an introductory programming course
or a programming logic and design course using Python as the language.

As with all the books in the Starting Out With series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that
are concise and practical. The programs in this book include short examples that highlight
specific programming topics, as well as more involved examples that focus on problem
solving. Each chapter provides one or more case studies that provide step-by-step analysis
of a specific problem and shows the student how to solve it.

Control Structures First, Then Classes
Python is a fully object-oriented programming language, but students do not have to understand
object-oriented concepts to start programming in Python. This text first introduces the student
to the fundamentals of data storage, input and output, control structures, functions, sequences
and lists, file I/O, and objects that are created from standard library classes. Then the student
learns to write classes, explores the topics of inheritance and polymorphism, and learns to write
recursive functions. Finally, the student learns to develop simple event-driven GUI applications.

Changes in the Second Edition
This book’s pedagogy, organization, and clear writing style remain the same as in the pre-
vious edition. However, many improvements have been made, which are summarized here:

• This edition is based on Python 3
• A series of online VideoNotes has been developed to accompany this book.
• Many examples of exploring topics with the interactive mode interpreter have been

added throughout the book.
• The section covering nested loops in Chapter 5 has been enhanced with additional

examples and an additional In the Spotlight section.

Preface

xi

xii Preface

• The chapter on lists and strings has been split into two chapters, and the material on
these topics has been enhanced. In this edition, Chapter 8 is Lists and Tuples, and
Chapter 9 is More About Strings.

• Multidimensional lists are covered in this edition.
• A new chapter on dictionaries and sets has been added to this edition.
• Object serialization (pickling) is now covered.
• The material on exception handling in Chapter 7 has been expanded.
• Chapter 11, Classes and Object-Oriented Programming, has expanded material on

passing objects as arguments, storing objects in dictionaries, and serializing (pickling)
objects.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a very concrete and easy-to-understand explanation of how
computers work, how data is stored and manipulated, and why we write programs in high-
level languages. An introduction to Python, interactive mode, script mode, and the IDLE
environment is also given.

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, variables, data types, and simple
programs that are written as sequence structures. The student learns to write simple programs
that read input from the keyboard, perform mathematical operations, and produce screen
output. Pseudocode and flowcharts are also introduced as tools for designing programs.

Chapter 3: Simple Functions

This chapter shows the benefits of modularizing programs and using the top-down design
approach. The student learns to define and call simple functions (functions that do not
return values), pass arguments to functions, and use local variables. Hierarchy charts are
introduced as a design tool.

Chapter 4: Decision Structures and Boolean Logic

In this chapter the student learns about relational operators and Boolean expressions and
is shown how to control the flow of a program with decision structures. The if, if-else,
and if-elif-else statements are covered. Nested decision structures and logical opera-
tors are also discussed.

Chapter 5: Repetition Structures

This chapter shows the student how to create repetition structures using the while loop
and for loop. Counters, accumulators, running totals, and sentinels are discussed, as well
as techniques for writing input validation loops.

Preface xiii

Chapter 6: Value-Returning Functions and Modules

This chapter begins by discussing common library functions, such as those for generating
random numbers. After learning how to call library functions and use their return value,
the student learns to define and call his or her own functions. Then the student learns how
to use modules to organize functions.

Chapter 7: Files and Exceptions

This chapter introduces sequential file input and output. The student learns to read and
write large sets of data and store data as fields and records. The chapter concludes by dis-
cussing exceptions and shows the student how to write exception-handling code.

Chapter 8: Lists and Tuples

This chapter introduces the student to the concept of a sequence in Python and explores the
use of two common Python sequences: lists and tuples. The student learns to use lists for
arraylike operations, such as storing objects in a list, iterating over a list, searching for items
in a list, and calculating the sum and average of items in a list. The chapter discusses slic-
ing and many of the list methods. One- and two-dimensional lists are covered.

Chapter 9: More About Strings

In this chapter the student learns to process strings at a detailed level. String slicing and
algorithms that step through the individual characters in a string are discussed, and several
built-in functions and string methods for character and text processing are introduced.

Chapter 10: Dictionaries and Sets

This chapter introduces the dictionary and set data structures. The student learns to store
data as key-value pairs in dictionaries, search for values, change existing values, add new
key-value pairs, and delete key-value pairs. The student learns to store values as unique ele-
ments in sets and perform common set operations such as union, intersection, difference,
and symmetric difference. The chapter concludes with a discussion of object serialization
and introduces the student to the Python pickle module.

Chapter 11: Classes and Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It covers the
fundamental concepts of classes and objects. Attributes, methods, encapsulation and data
hiding, __init__ functions (which are similar to constructors), accessors, and mutators
are discussed. The student learns how to model classes with UML and how to find the
classes in a particular problem.

Chapter 12: Inheritance

The study of classes continues in this chapter with the subjects of inheritance and polymor-
phism. The topics covered include superclasses, subclasses, how __init__ functions work
in inheritance, method overriding, and polymorphism.

Chapter 13: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive
calls is provided and recursive applications are discussed. Recursive algorithms for many
tasks are presented, such as finding factorials, finding a greatest common denominator
(GCD), and summing a range of values in a list, and the classic Towers of Hanoi example
are presented.

Chapter 14: GUI Programming

This chapter discusses the basic aspects of designing a GUI application using the tkinter
module in Python. Fundamental widgets, such as labels, button, entry fields, radio buttons,
check buttons, and dialog boxes, are covered. The student also learns how events work in
a GUI application and how to write callback functions to handle events.

Appendix A: Installing Python

This appendix explains how to download and install the Python 3 interpreter.

Appendix B: Introduction to IDLE

This appendix gives an overview of the IDLE integrated development environment that
comes with Python.

Appendix C: The ASCII Character Set

As a reference, this appendix lists the ASCII character set.

Appendix D: Answers to Checkpoints

This appendix gives the answers to the Checkpoint questions that appear throughout the text.

Organization of the Text
The text teaches programming in a step-by-step manner. Each chapter covers a major set of
topics and builds knowledge as students progress through the book. Although the chapters
can be easily taught in their existing sequence, you do have some flexibility in the order that
you wish to cover them. Figure P-1 shows chapter dependencies. Each box represents a
chapter or a group of chapters. An arrow points from a chapter to the chapter that must
be covered before it.

xiv Preface

Features of the Text

Concept Each major section of the text starts with a concept statement.
Statements This statement concisely summarizes the main point of the section.

Example Programs Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic.

In the Spotlight Each chapter has one or more In the Spotlight case studies that

Case Studies provide detailed, step-by-step analysis of problems and show the
student how to solve them.

VideoNotes Online videos developed specifically for this book are available
for viewing at www.pearsonhighered.com/gaddis/videonotes.
Icons appear throughout the text alerting the student to videos
about specific topics.

Notes Notes appear at several places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

Tips Tips advise the student on the best techniques for approaching
different programming problems.

Warnings Warnings caution students about programming techniques or
practices that can lead to malfunctioning programs or lost data.

Preface xv

Chapters 1-6
(Cover in Order)

Chapter 8
Lists and Tuples

Chapter 7
Files and Exceptions

Chapter 13
Recursion

Chapter 12
Inheritance

Chapter 14
GUI Programming

Chapter 9
More About Strings

Chapter 10
Dictionaries and Sets

Chapter 11
Classes and Object-

Oriented Programming

*The material on object
serialization in Chapters 10
and 11 uses exception handling.

Figure P-1 Chapter dependencies

www.pearsonhighered.com/gaddis/videonotes

Checkpoints Checkpoints are questions placed at intervals throughout each
chapter. They are designed to query the student’s knowledge
quickly after learning a new topic.

Review Questions Each chapter presents a thorough and diverse set of review
questions and exercises. They include Multiple Choice,
True/False, Algorithm Workbench, and Short Answer.

Programming Each chapter offers a pool of programming exercises designed to

Exercises solidify the student’s knowledge of the topics currently being studied.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following items
are available on the Gaddis Series resource page at www.pearsonhighered.com/gaddis:

• The source code for each example program in the book

• Access to the book’s companion VideoNotes

Instructor Resources

The following supplements are available to qualified instructors only:

• Answers to all of the Review Questions

• Solutions for the exercises

• PowerPoint presentation slides for each chapter

• Test bank

Visit the Addison-Wesley Instructor Resource Center (www.pearsonhighered.com/irc) or
send an email to computing@pearson.com for information on how to access them.

Acknowledgments
I would like to thank the following faculty reviewers for their insight, expertise, and
thoughtful recommendations:

Desmond K. H. Chun
Chabot Community College

Bob Husson
Craven Community College

Shyamal Mitra
University of Texas at Austin

Ken Robol
Beaufort Community College

Eric Shaffer
University of Illinois at Urbana-Champaign

Ann Ford Tyson
Florida State University

Linda F. Wilson
Texas Lutheran University

xvi Preface

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/irc

I would like to thank my family for their love and support in all my many projects. I would
also like to thank Christopher Rich for his assistance in this revision. I am extremely fortu-
nate to have Michael Hirsch as my editor and Stephanie Sellinger as editorial assistant.
Michael’s support and encouragement makes it a pleasure to write chapters and meet dead-
lines. I am also fortunate to have Yez Alayan as marketing manager and Kathryn Ferranti
as marketing coordinator. They do a great job getting my books out to the academic com-
munity. I had a great production team led by Jeff Holcomb, Managing Editor, and Kayla
Smith-Tarbox, Production Project Manager. Thanks to you all!

About the Author
Tony Gaddis is the principal author of the Starting Out With series of textbooks. Tony has
nearly two decades of experience teaching computer science courses, primarily at Haywood
Community College. He is a highly acclaimed instructor who was previously selected as the
North Carolina Community College “Teacher of the Year” and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out With series includes introductory books covering C++, Java™, Microsoft®

Visual Basic®, Microsoft® C#®, Python®, Programming Logic and Design, and Alice, all
published by Addison-Wesley. More information about all these books can be found at
www.pearsonhighered.com/gaddisbooks.

Preface xvii

www.pearsonhighered.com/gaddisbooks

This page intentionally left blank

1

1.1 Introduction
Think about some of the different ways that people use computers. In school, students use
computers for tasks such as writing papers, searching for articles, sending email, and partici-
pating in online classes. At work, people use computers to analyze data, make presentations,
conduct business transactions, communicate with customers and coworkers, control ma-
chines in manufacturing facilities, and do many other things. At home, people use comput-
ers for tasks such as paying bills, shopping online, communicating with friends and family,
and playing computer games. And don’t forget that cell phones, iPods®, smart phones, car
navigation systems, and many other devices are computers too. The uses of computers are
almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This means
that computers are not designed to do just one job, but to do any job that their programs tell
them to do. A program is a set of instructions that a computer follows to perform a task. For
example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two commonly
used programs.

Programs are commonly referred to as software. Software is essential to a computer because
it controls everything the computer does. All of the software that we use to make our com-
puters useful is created by individuals working as programmers or software developers. A
programmer, or software developer, is a person with the training and skills necessary to
design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers’ work used in business, medicine, gov-
ernment, law enforcement, agriculture, academics, entertainment, and many other fields.

This book introduces you to the fundamental concepts of computer programming using the
Python language. The Python language is a good choice for beginners because it is easy to learn

Introduction to Computers
and Programming1

TOPICS

1.1 Introduction
1.2 Hardware and Software
1.3 How Computers Store Data

1.4 How a Program Works
1.5 Using Python

C
H

A
P

T
E

R

2 Chapter 1 Introduction to Computers and Programming

and programs can be written quickly using it. Python is also a powerful language, popular with
professional software developers. In fact, it is has been reported that Python is used by Google,
NASA, YouTube, various game companies, the New York Stock Exchange, and many others.

Before we begin exploring the concepts of programming, you need to understand a few
basic things about computers and how they work. This chapter will build a solid founda-
tion of knowledge that you will continually rely on as you study computer science. First,
we will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will get a quick
introduction to the software that you will use to write Python programs.

1.2 Hardware and Software

CONCEPT: The physical devices that a computer is made of are referred to as the
computer’s hardware. The programs that run on a computer are referred
to as software.

Hardware
The term hardware refers to all of the physical devices, or components, that a computer is made
of. A computer is not one single device, but a system of devices that all work together. Like the
different instruments in a symphony orchestra, each device in a computer plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing com-
ponents such as microprocessors, memory, disk drives, video displays, graphics cards, and
so on. Unless you already know a lot about computers, or at least have a friend that does,
understanding what these different components do might be challenging. As shown in
Figure 1-2, a typical computer system consists of the following major components:

• The central processing unit (CPU)
• Main memory
• Secondary storage devices

Figure 1-1 A word processing program and an image editing program

1.2 Hardware and Software 3

• Input devices
• Output devices

Let’s take a closer look at each of these components.

The CPU
When a computer is performing the tasks that a program tells it to do, we say that the com-
puter is running or executing the program. The central processing unit, or CPU, is the part
of a computer that actually runs programs. The CPU is the most important component in
a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical com-
ponents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two
women in the photo are working with the historic ENIAC computer. The ENIAC, which
is considered by many to be the world’s first programmable electronic computer, was built
in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was
primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern microprocessor. In addition to being much smaller than the old
electromechanical CPUs in early computers, microprocessors are also much more powerful.

Figure 1-2 Typical components of a computer system

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

4 Chapter 1 Introduction to Computers and Programming

Figure 1-3 The ENIAC computer (courtesy of U.S. Army Historic Computer Images)

Figure 1-4 A lab technician holds a modern microprocessor (Vadim Kolobanov/Shutterstock)

1.2 Hardware and Software 5

Main Memory
You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are
erased. Inside your computer, RAM is stored in chips, similar to the ones shown in
Figure 1-5.

Figure 1-5 Memory chips (Garsya/Shutterstock)

Secondary Storage Devices
Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word pro-
cessing documents, payroll data, and inventory records, is saved to secondary storage
as well.

The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s
communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying
data, and for moving it to other computers. For many years floppy disk drives were popu-
lar. A floppy disk drive records data onto a small floppy disk, which can be removed from
the drive. Floppy disks have many disadvantages, however. They hold only a small amount
of data, are slow to access data, and can be unreliable. The use of floppy disk drives has
declined dramatically in recent years, in favor of superior devices such as USB drives. USB
drives are small devices that plug into the computer’s USB (universal serial bus) port, and

6 Chapter 1 Introduction to Computers and Programming

appear to the system as a disk drive. These drives do not actually contain a disk, however.
They store data in a special type of memory known as flash memory. USB drives, which are
also known as memory sticks and flash drives, are inexpensive, reliable, and small enough
to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also
popular for data storage. Data is not recorded magnetically on an optical disc, but is encoded
as a series of pits on the disc surface. CD and DVD drives use a laser to detect the pits and
thus read the encoded data. Optical discs hold large amounts of data, and because recordable
CD and DVD drives are now commonplace, they are good mediums for creating backup
copies of data.

Input Devices
Input is any data the computer collects from people and from other devices. The compo-
nent that collects the data and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk
drives and optical drives can also be considered input devices because programs and data
are retrieved from them and loaded into the computer’s memory.

Output Devices
Output is any data the computer produces for people or for other devices. It might be a
sales report, a list of names, or a graphic image. The data is sent to an output device, which
formats and presents it. Common output devices are video displays and printers. Disk
drives and CD recorders can also be considered output devices because the system sends
data to them in order to be saved.

Software
If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let’s take a closer look at each.

System Software
The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

Operating Systems An operating system is the most fundamental set of programs on a
computer. The operating system controls the internal operations of the computer’s
hardware, manages all of the devices connected to the computer, allows data to be saved
to and retrieved from storage devices, and allows other programs to run on the computer.
Figure 1-6 shows screens from three popular operating systems: Windows, Mac OS, and
Linux.

1.2 Hardware and Software 7

Figure 1-6 Screens from the Windows, Mac OS, and Linux operating systems

Windows Mac OS

Linux

Utility Programs A utility program performs a specialized task that enhances the com-
puter’s operation or safeguards data. Examples of utility programs are virus scanners,
file compression programs, and data backup programs.
Software Development Tools Software development tools are the programs that pro-
grammers use to create, modify, and test software. Assemblers, compilers, and inter-
preters are examples of programs that fall into this category.

Application Software
Programs that make a computer useful for everyday tasks are known as application software.
These are the programs that people normally spend most of their time running on their com-
puters. Figure 1-1, at the beginning of this chapter, shows screens from two commonly used
applications: Microsoft Word, a word processing program, and PowerPoint, a presentation
program. Some other examples of application software are spreadsheet programs, email pro-
grams, web browsers, and game programs.

Checkpoint

1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.

1.4 What part of the computer actually runs programs?

8 Chapter 1 Introduction to Computers and Programming

1.5 What part of the computer serves as a work area to store a program and its data
while the program is running?

1.6 What part of the computer holds data for long periods of time, even when there is
no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other
devices?

1.9 What fundamental set of programs control the internal operations of the
computer’s hardware?

1.10 What do you call a program that performs a specialized task, such as a virus
scanner, a file compression program, or a data backup program?

1.11 Word processing programs, spreadsheet programs, email programs, web browsers,
and game programs belong to what category of software?

1.3 How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences of 0s
and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
only enough memory to store a letter of the alphabet or a small number. In order to do any-
thing meaningful, a computer has to have lots of bytes. Most computers today have mil-
lions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren’t actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position, and a negative charge as a switch in the off position. Figure 1-7 shows the way
that a computer scientist might think of a byte of memory: as a collection of switches that
are each flipped to either the on or off position.

Figure 1-7 Think of a byte as eight switches

OFF

ON

OFF OFFOFF

ON ON ON

1.3 How Computers Store Data 9

When a piece of data is stored in a byte, the computer sets the eight bits to an on/off pat-
tern that represents the data. For example, the pattern on the left in Figure 1-8 shows
how the number 77 would be stored in a byte, and the pattern on the right shows
how the letter A would be stored in a byte. We explain below how these patterns are
determined.

Figure 1-8 Bit patterns for the number 77 and the letter A

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

1 0 0 1 1 1 0 1
20

21

22

23

24

25

26

27

Figure 1-9 The values of binary digits as powers of 2

Storing Numbers
A bit can be used in a very limited way to represent numbers. Depending on whether the
bit is turned on or off, it can represent one of two different values. In computer systems, a
bit that is turned off represents the number 0 and a bit that is turned on represents the num-
ber 1. This corresponds perfectly to the binary numbering system. In the binary numbering
system (or binary, as it is usually called) all numeric values are written as sequences of 0s
and 1s. Here is an example of a number that is written in binary:

10011101

The position of each digit in a binary number has a value assigned to it. Starting with the
rightmost digit and moving left, the position values are 20, 21, 22, 23, and so forth, as shown
in Figure 1-9. Figure 1-10 shows the same diagram with the position values calculated.
Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so
forth.

10 Chapter 1 Introduction to Computers and Programming

128 + 16 + 8 + 4 + 1 = 157

1

128 64 32 16 8 4 2 1
Position
values

1

0

11 1 1

0 0

Figure 1-12 The bit pattern for 157

1 0 0 1 1 1 0 1
 1
 2
 4
 8
 16
 32
 64
128

Figure 1-10 The values of binary digits

1 0 0 1 1 1 0 1
1

4
8
16

128

1 + 4 + 8 + 16 + 128 = 157

Figure 1-11 Determining the value of 10011101

To determine the value of a binary number you simply add up the position values of all the
1s. For example, in the binary number 10011101, the position values of the 1s are 1, 4, 8,
16, and 128. This is shown in Figure 1-11. The sum of all of these position values is 157.
So, the value of the binary number 10011101 is 157.

Figure 1-12 shows how you can picture the number 157 stored in a byte of memory. Each
1 is represented by a bit in the on position, and each 0 is represented by a bit in the off
position.

1.3 How Computers Store Data 11

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When
all of the bits in a byte are set to 1 (turned on), then the byte holds the largest value that
can be stored in it. The largest value that can be stored in a byte is 1 � 2 � 4 � 8 � 16 �
32 � 64 � 128 � 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more than
one byte. For example, suppose we put two bytes together. That gives us 16 bits. The posi-
tion values of those 16 bits would be 20, 21, 22, 23, and so forth, up through 215. As shown
in Figure 1-13, the maximum value that can be stored in two bytes is 65,535. If you need
to store a number larger than this, then more bytes are necessary.

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768
Position
values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1-13 Two bytes used for a large number

TIP: In case you’re feeling overwhelmed by all this, relax! You will not have to actu-
ally convert numbers to binary while programming. Knowing that this process is tak-
ing place inside the computer will help you as you learn, and in the long term this
knowledge will make you a better programmer.

Storing Characters
Any piece of data that is stored in a computer’s memory must be stored as a binary num-
ber. That includes characters, such as letters and punctuation marks. When a character is
stored in memory, it is first converted to a numeric code. The numeric code is then stored
in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII,
which stands for the American Standard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 65 is stored in memory (as a
binary number, of course). This is shown in Figure 1-14.

65A
00

1

0

1

0 0 0

Figure 1-14 The letter A is stored in memory as the number 65

12 Chapter 1 Introduction to Computers and Programming

1001010111010
0
010101101

Figure 1-15 A digital image is stored in binary format

TIP: The acronym ASCII is pronounced “askee.”

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67,
and so forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s, and was eventually adopted by
most all computer manufacturers. ASCII is limited however, because it defines codes for
only 128 characters. To remedy this, the Unicode character set was developed in the early
1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can also
represent characters for many of the languages in the world. Today, Unicode is quickly
becoming the standard character set used in the computer industry.

Advanced Number Storage
Earlier you read about numbers and how they are stored in memory. While reading that
section, perhaps it occurred to you that the binary numbering system can be used to repre-
sent only integer numbers, beginning with 0. Negative numbers and real numbers (such as
3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so
they use encoding schemes along with the binary numbering system. Negative numbers are
encoded using a technique known as two’s complement, and real numbers are encoded in
floating-point notation. You don’t need to know how these encoding schemes work, only
that they are used to convert negative numbers and real numbers to binary format.

Other Types of Data
Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary, and a digital
device is any device that works with binary data. In this section we have discussed how
numbers and characters are stored in binary, but computers also work with many other
types of digital data.

For example, consider the pictures that you take with your digital camera. These images
are composed of tiny dots of color known as pixels. (The term pixel stands for picture
element.) As shown in Figure 1-15, each pixel in an image is converted to a numeric code
that represents the pixel’s color. The numeric code is stored in memory as a binary number.

The music that you play on your CD player, iPod, or MP3 player is also digital. A digital
song is broken into small pieces known as samples. Each sample is converted to a binary
number, which can be stored in memory. The more samples that a song is divided into,
the more it sounds like the original music when it is played back. A CD quality song is
divided into more than 44,000 samples per second!

Checkpoint

1.12 What amount of memory is enough to store a letter of the alphabet or a small number?

1.13 What do you call a tiny “switch” that can be set to either on or off?

1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?

1.15 What is the purpose of ASCII?

1.16 What encoding scheme is extensive enough to represent the characters of many of
the languages in the world?

1.17 What do the terms “digital data” and “digital device” mean?

1.4 How a Program Works

CONCEPT: A computer’s CPU can only understand instructions that are written in
machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have been
invented.

Earlier, we stated that the CPU is the most important component in a computer because it
is the part of the computer that runs programs. Sometimes the CPU is called the “computer’s
brain,” and is described as being “smart.” Although these are common metaphors, you
should understand that the CPU is not a brain, and it is not smart. The CPU is an electronic
device that is designed to do specific things. In particular, the CPU is designed to perform
operations such as the following:

• Reading a piece of data from main memory
• Adding two numbers
• Subtracting one number from another number
• Multiplying two numbers
• Dividing one number by another number
• Moving a piece of data from one memory location to another
• Determining whether one value is equal to another value

As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It has to be told what to do, and that’s the purpose
of a program. A program is nothing more than a list of instructions that cause the CPU to
perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific oper-
ation. Here’s an example of an instruction that might appear in a program:

10110000

1.4 How a Program Works 13

14 Chapter 1 Introduction to Computers and Programming

To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruction
to perform an operation.1 It is written in 0s and 1s because CPUs only understand instruc-
tions that are written in machine language, and machine language instructions always have
an underlying binary structure.

A machine language instruction exists for each operation that a CPU is capable of perform-
ing. For example, there is an instruction for adding numbers, there is an instruction for sub-
tracting one number from another, and so forth. The entire set of instructions that a CPU
can execute is known as the CPU’s instruction set.

1 The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor to move a
value into the CPU.

NOTE: There are several microprocessor companies today that manufacture CPUs.
Some of the more well-known microprocessor companies are Intel, AMD, and
Motorola. If you look carefully at your computer, you might find a tag showing a logo
for its microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micro-
processors understand the same instructions, but they do not understand instructions
for Motorola microprocessors.

The machine language instruction that was previously shown is an example of only one
instruction. It takes a lot more than one instruction, however, for the computer to do
anything meaningful. Because the operations that a CPU knows how to perform are so
basic in nature, a meaningful task can be accomplished only if the CPU performs many
operations. For example, if you want your computer to calculate the amount of inter-
est that you will earn from your savings account this year, the CPU will have to
perform a large number of instructions, carried out in the proper sequence. It is not
unusual for a program to contain thousands or even millions of machine language
instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you
install a program on your computer, the program is typically copied to your computer’s disk
drive from a CD-ROM, or perhaps downloaded from a website.

Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For
example, suppose you have a word processing program on your computer’s disk. To
execute the program you use the mouse to double-click the program’s icon. This causes
the program to be copied from the disk into main memory. Then, the computer’s CPU
executes the copy of the program that is in main memory. This process is illustrated in
Figure 1-16.

1.4 How a Program Works 15

When a CPU executes the instructions in a program, it is engaged in a process that is known
as the fetch-decode-execute cycle. This cycle, which consists of three steps, is repeated for
each instruction in the program. The steps are:

1. Fetch A program is a long sequence of machine language instructions. The first step of the
cycle is to fetch, or read, the next instruction from memory into the CPU.

2. Decode A machine language instruction is a binary number that represents a com-
mand that tells the CPU to perform an operation. In this step the CPU decodes the
instruction that was just fetched from memory, to determine which operation it
should perform.

3. Execute The last step in the cycle is to execute, or perform, the operation.

Figure 1-17 illustrates these steps.

Main memory

(RAM)

Disk drive CPU

The program is copied

from secondary storage

to main memory.

The CPU executes

the program in

main memory.

Figure 1-16 A program is copied into main memory and then executed

CPU

Main memory

(RAM)

10111000

10100001

10011110

00011010

11011100

and so forth...

10100001

1
Fetch the next instruction

in the program.

Decode the instruction

to determine which

operation to perform.

3
Execute the instruction

(perform the operation).

2

Figure 1-17 The fetch-decode-execute cycle

From Machine Language to Assembly Language
Computers can only execute programs that are written in machine language. As previously
mentioned, a program can have thousands or even millions of binary instructions, and writing
such a program would be very tedious and time consuming. Programming in machine language
would also be very difficult because putting a 0 or a 1 in the wrong place will cause an error.

Assembly language programs cannot be executed by the CPU, however. The CPU only
understands machine language, so a special program known as an assembler is used to
translate an assembly language program to a machine language program. This process is
shown in Figure 1-18. The machine language program that is created by the assembler can
then be executed by the CPU.

16 Chapter 1 Introduction to Computers and Programming

Although a computer’s CPU only understands machine language, it is impractical for people
to write programs in machine language. For this reason, assembly language was created in the
early days of computing2 as an alternative to machine language. Instead of using binary num-
bers for instructions, assembly language uses short words that are known as mnemonics. For
example, in assembly language, the mnemonic add typically means to add numbers, mul typ-
ically means to multiply numbers, and mov typically means to move a value to a location in
memory. When a programmer uses assembly language to write a program, he or she can write
short mnemonics instead of binary numbers.

2 The first assembly language was most likely that developed in the 1940s at Cambridge University for use with
a historic computer known as the EDSAC.

mov eax, Z

add eax, 2

mov Y, eax

and so forth...
Assembler

10111000

10100001

10011110
and so forth...

Assembly language
program

Machine language
program

Figure 1-18 An assembler translates an assembly language program to a machine
language program

NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

High-Level Languages
Although assembly language makes it unnecessary to write binary machine language
instructions, it is not without difficulties. Assembly language is primarily a direct substitute
for machine language, and like machine language, it requires that you know a lot about the
CPU. Assembly language also requires that you write a large number of instructions for
even the simplest program. Because assembly language is so close in nature to machine lan-
guage, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level languages
began to appear. A high-level language allows you to create powerful and complex programs
without knowing how the CPU works, and without writing large numbers of low-level
instructions. In addition, most high-level languages use words that are easy to understand.
For example, if a programmer were using COBOL (which was one of the early high-level

1.4 How a Program Works 17

languages created in the 1950s), he or she would write the following instruction to display the
message Hello world on the computer screen:

DISPLAY "Hello world"

Python is a modern, high-level programming language that we will use in this book. In
Python you would display the message Hello world with the following instruction:

print('Hello world')

Doing the same thing in assembly language would require several instructions, and an intimate
knowledge of how the CPU interacts with the computer’s output device. As you can see from this
example, high-level languages allow programmers to concentrate on the tasks they want to per-
form with their programs rather than the details of how the CPU will execute those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists several
of the more well-known languages.

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.
Department of Defense. The language is named in honor of Countess Ada
Lovelace, an influential and historic figure in the field of computing.

BASIC Beginners All-purpose Symbolic Instruction Code is a general-purpose language
that was originally designed in the early 1960s to be simple enough for begin-
ners to learn. Today, there are many different versions of BASIC.

FORTRAN FORmula TRANslator was the first high-level programming language. It was
designed in the 1950s for performing complex mathematical calculations.

COBOL Common Business-Oriented Language was created in the 1950s, and was
designed for business applications.

Pascal Pascal was created in 1970, and was originally designed for teaching program-
ming. The language was named in honor of the mathematician, physicist, and
philosopher Blaise Pascal.

C and C++ C and C++ (pronounced “c plus plus”) are powerful, general-purpose lan-
guages developed at Bell Laboratories. The C language was created in 1972
and the C++ language was created in 1983.

C# Pronounced “c sharp.” This language was created by Microsoft around the
year 2000 for developing applications based on the Microsoft .NET platform.

Java Java was created by Sun Microsystems in the early 1990s. It can be used to develop
programs that run on a single computer or over the Internet from a web server.

JavaScript JavaScript, created in the 1990s, can be used in web pages. Despite its name,
JavaScript is not related to Java.

Python Python, the language we use in this book, is a general-purpose language created
in the early 1990s. It has become popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increas-
ingly becoming a popular language for programs that run on web servers.

Visual Basic Visual Basic (commonly known as VB) is a Microsoft programming language and
software development environment that allows programmers to create Windows-
based applications quickly. VB was originally created in the early 1990s.

18 Chapter 1 Introduction to Computers and Programming

Key Words, Operators, and Syntax: an Overview
Each high-level language has its own set of predefined words that the programmer must use
to write a program. The words that make up a high-level programming language are known
as key words or reserved words. Each key word has a specific meaning, and cannot be used
for any other purpose. Table 1-2 shows all of the Python key words.

In addition to key words, programming languages have operators that perform various
operations on data. For example, all programming languages have math operators that per-
form arithmetic. In Python, as well as most other languages, the � sign is an operator that
adds two numbers. The following adds 12 and 75:

12 + 75

There are numerous other operators in the Python language, many of which you will learn
about as you progress through this text.

In addition to key words and operators, each language also has its own syntax, which is a
set of rules that must be strictly followed when writing a program. The syntax rules dictate
how key words, operators, and various punctuation characters must be used in a program.
When you are learning a programming language, you must learn the syntax rules for that
particular language.

The individual instructions that you use to write a program in a high-level programming
language are called statements. A programming statement can consist of key words, oper-
ators, punctuation, and other allowable programming elements, arranged in the proper
sequence to perform an operation.

Compilers and Interpreters
Because the CPU understands only machine language instructions, programs that are writ-
ten in a high-level language must be translated into machine language. Depending on the
language that a program has been written in, the programmer will use either a compiler or
an interpreter to make the translation.

A compiler is a program that translates a high-level language program into a separate
machine language program. The machine language program can then be executed any time
it is needed. This is shown in Figure 1-19. As shown in the figure, compiling and executing
are two different processes.

Table 1-2 The Python key words

and del from None True
as elif global nonlocal try
assert else if not while
break except import or with
class False in pass yield
continue finally is raise
def for lambda return

1.4 How a Program Works 19

print ("Hello
Earthling")

and so forth...

High-level language
program

Machine language
program

Compiler
10111000

10100001

10011110
and so forth...

10111000

10100001

10011110
and so forth...

Machine language
program

CPU

The compiler is used
to translate the high-level
language program to a

machine language program.

1

The machine language
program can be executed
at any time, without using

the compiler.

2

Figure 1-19 Compiling a high-level program and executing it

The Python language uses an interpreter, which is a program that both translates and exe-
cutes the instructions in a high-level language program. As the interpreter reads each indi-
vidual instruction in the program, it converts it to machine language instructions and then
immediately executes them. This process repeats for every instruction in the program. This
process is illustrated in Figure 1-20. Because interpreters combine translation and execu-
tion, they typically do not create separate machine language programs.

The interpreter translates each high-level instruction to
its equivalent machine language instructions and

immediately executes them.

This process is repeated for each high-level instruction.

print ("Hello
Earthling")

and so forth...

program

Interpreter 10100001

Machine language

High-level language

instruction

CPU

Figure 1-20 Executing a high-level program with an interpreter

The statements that a programmer writes in a high-level language are called source code,
or simply code. Typically, the programmer types a program’s code into a text editor and
then saves the code in a file on the computer’s disk. Next, the programmer uses a compiler
to translate the code into a machine language program, or an interpreter to translate and
execute the code. If the code contains a syntax error, however, it cannot be translated. A
syntax error is a mistake such as a misspelled key word, a missing punctuation character,
or the incorrect use of an operator. When this happens the compiler or interpreter displays
an error message indicating that the program contains a syntax error. The programmer cor-
rects the error and then attempts once again to translate the program.

20 Chapter 1 Introduction to Computers and Programming

NOTE: Human languages also have syntax rules. Do you remember when you took
your first English class, and you learned all those rules about commas, apostrophes,
capitalization, and so forth? You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when
speaking and writing, other people usually understand what they mean. Unfortunately,
compilers and interpreters do not have this ability. If even a single syntax error appears
in a program, the program cannot be compiled or executed. When an interpreter
encounters a syntax error, it stops executing the program.

Checkpoint

1.18 A CPU understands instructions that are written only in what language?

1.19 A program has to be copied into what type of memory each time the CPU executes it?

1.20 When a CPU executes the instructions in a program, it is engaged in what process?

1.21 What is assembly language?

1.22 What type of programming language allows you to create powerful and complex
programs without knowing how the CPU works?

1.23 Each language has a set of rules that must be strictly followed when writing a
program. What is this set of rules called?

1.24 What do you call a program that translates a high-level language program into a
separate machine language program?

1.25 What do you call a program that both translates and executes the instructions in a
high-level language program?

1.26 What type of mistake is usually caused by a misspelled key word, a missing
punctuation character, or the incorrect use of an operator?

1.5 Using Python

CONCEPT: The Python interpreter can run Python programs that are saved in files,
or interactively execute Python statements that are typed at the keyboard.
Python comes with a program named IDLE that simplifies the process of
writing, executing, and testing programs.

Installing Python
Before you can try any of the programs shown in this book, or write any programs of your
own, you need to make sure that Python is installed on your computer and properly con-
figured. If you are working in a computer lab, this has probably been done already. If you
are using your own computer, you can follow the instructions in Appendix A to install
Python from the accompanying CD.

1.5 Using Python 21

The Python Interpreter
You learned earlier that Python is an interpreted language. When you install the Python lan-
guage on your computer, one of the items that is installed is the Python interpreter. The
Python interpreter is a program that can read Python programming statements and execute
them. (Sometimes we will refer to the Python interpreter simply as the interpreter.)

You can use the interpreter in two modes: interactive mode and script mode. In interactive
mode, the interpreter waits for you to type Python statements on the keyboard. Once you
type a statement, the interpreter executes it and then waits for you to type another statement.
In script mode, the interpreter reads the contents of a file that contains Python statements.
Such a file is known as a Python program or a Python script. The interpreter executes each
statement in the Python program as it reads it.

Interactive Mode
Once Python has been installed and set up on your system, you start the interpreter in interac-
tive mode by going to the operating system’s command line and typing the following command:

python

If you are using Windows, you can alternatively click the Start button, then All Programs.
You should see a program group named something like Python 3.1. (The “3.1” is the ver-
sion of Python that is installed. At the time this is being written, Python 3.1 is the latest ver-
sion.) Inside this program group you should see an item named Python (command line).
Clicking this menu item will start the Python interpreter in interactive mode.

When the Python interpreter starts in interactive mode, you will see something like the fol-
lowing displayed in a console window:

Python 3.1.2 (r312:79149, Mar 20 2010, 22:55:39) [MSC v.1500 64 bit
(AMD64)] on win32
Type "help", "copyright", "credits" or "license"
for more information.
���

The ��� that you see is a prompt that indicates the interpreter is waiting for you to type a
Python statement. Let’s try it out. One of the simplest things that you can do in Python is
print a message on the screen. For example, the following statement prints the message
Python programming is fun! on the screen:

print('Python programming is fun!')

You can think of this as a command that you are sending to the Python interpreter. If you type
the statement exactly as it is shown, the message Python programming is fun! is printed on
the screen. Here is an example of how you type this statement at the interpreter’s prompt:

>>> print('Python programming is fun!') e

After typing the statement, you press the Enter key and the Python interpreter executes the
statement, as shown here:

��� print('Python programming is fun!') e
Python programming is fun!
���

22 Chapter 1 Introduction to Computers and Programming

After the message is displayed, the >>> prompt appears again, indicating that the inter-
preter is waiting for you to enter another statement. Let’s look at another example. In the
following sample session, we have entered two statements:

��� print('To be or not to be') e
To be or not to be
��� print('That is the question.') e
That is the question.
���

If you incorrectly type a statement in interactive mode, the interpreter will display an error
message. This will make interactive mode useful to you while you learn Python. As you
learn new parts of the Python language, you can try them out in interactive mode and get
immediate feedback from the interpreter.

To quit the Python interpreter in interactive mode on a Windows computer, press Ctrl-Z
(pressing both keys together) followed by Enter. On a Mac, Linux, or UNIX computer,
press Ctrl-D.

NOTE: In Chapter 2 we discuss the details of statements like the ones previously
shown. If you want to try them now in interactive mode, make sure you type them
exactly as shown.

Writing Python Programs and Running
Them in Script Mode
Although interactive mode is useful for testing code, the statements that you enter in inter-
active mode are not saved as a program. They are simply executed and their results dis-
played on the screen. If you want to save a set of Python statements as a program, you save
those statements in a file. Then, to execute the program, you use the Python interpreter in
script mode.

For example, suppose you want to write a Python program that displays the following three
lines of text:

Nudge nudge
Wink wink
Know what I mean?

To write the program you would use a simple text editor like Notepad (which is installed
on all Windows computers) to create a file containing the following statements:

print('Nudge nudge')
print('Wink wink')
print('Know what I mean?')

1.5 Using Python 23

When you save a Python program, you give it a name that ends with the .py extension, which
identifies it as a Python program. For example, you might save the program previously shown
with the name test.py. To run the program you would go to the directory in which the file
is saved and type the following command at the operating system command line:

python test.py

This starts the Python interpreter in script mode and causes it to execute the statements in
the file test.py. When the program finishes executing, the Python interpreter exits.

The IDLE Programming Environment
The previous sections described how the Python interpreter can be started in interactive
mode or script mode at the operating system command line. As an alternative, you can use
an integrated development environment, which is a single program that gives you all of the
tools you need to write, execute, and test a program.

Recent versions of Python include a program named IDLE, which is automatically installed
when the Python language is installed. (IDLE stands for Integrated DeveLopment Environment.)
When you run IDLE, the window shown in Figure 1-21 appears. Notice that the ��� prompt
appears in the IDLE window, indicating that the interpreter is running in interactive mode. You
can type Python statements at this prompt and see them executed in the IDLE window.

IDLE also has a built-in text editor with features specifically designed to help you write
Python programs. For example, the IDLE editor “colorizes” code so that key words and

Figure 1-21 IDLE

NOTE: It is possible to use a word processor to create a Python program, but you
must be sure to save the program as a plain text file. Otherwise the Python interpreter
will not be able to read its contents.

VideoNote
Using Interactive
Mode in IDLE

24 Chapter 1 Introduction to Computers and Programming

NOTE: Although IDLE is installed with Python, there are several other Python IDEs
available. Your instructor might prefer that you use a specific one in class.

other parts of a program are displayed in their own distinct colors. This helps make
programs easier to read. In IDLE you can write programs, save them to disk, and
execute them. Appendix B provides a quick introduction to IDLE, and leads you
through the process of creating, saving, and executing a Python program.

Review Questions
Multiple Choice

1. A(n) __________ is a set of instructions that a computer follows to perform a task.
a. compiler
b. program
c. interpreter
d. programming language

2. The physical devices that a computer is made of are referred to as __________.
a. hardware
b. software
c. the operating system
d. tools

3. The part of a computer that runs programs is called __________.
a. RAM
b. secondary storage
c. main memory
d. the CPU

4. Today, CPUs are small chips known as __________.
a. ENIACs
b. microprocessors
c. memory chips
d. operating systems

5. The computer stores a program while the program is running, as well as the data that
the program is working with, in __________.
a. secondary storage
b. the CPU
c. main memory
d. the microprocessor

6. This is a volatile type of memory that is used only for temporary storage while a pro-
gram is running.
a. RAM
b. secondary storage
c. the disk drive
d. the USB drive

Review Questions 25

7. A type of memory that can hold data for long periods of time, even when there is no
power to the computer, is called __________.
a. RAM
b. main memory
c. secondary storage
d. CPU storage

8. A component that collects data from people or other devices and sends it to the com-
puter is called __________.
a. an output device
b. an input device
c. a secondary storage device
d. main memory

9. A video display is a(n) __________ device.
a. output device
b. input device
c. secondary storage device
d. main memory

10. A __________ is enough memory to store a letter of the alphabet or a small number.
a. byte
b. bit
c. switch
d. transistor

11. A byte is made up of eight __________.
a. CPUs
b. instructions
c. variables
d. bits

12. In the __________ numbering system, all numeric values are written as sequences of 0s
and 1s.
a. hexadecimal
b. binary
c. octal
d. decimal

13. A bit that is turned off represents the following value: __________.
a. 1
b. –1
c. 0
d. “no”

14. A set of 128 numeric codes that represent the English letters, various punctuation
marks, and other characters is __________.
a. binary numbering
b. ASCII
c. Unicode
d. ENIAC

26 Chapter 1 Introduction to Computers and Programming

15. An extensive encoding scheme that can represent characters for many languages in the
world is __________.
a. binary numbering
b. ASCII
c. Unicode
d. ENIAC

16. Negative numbers are encoded using the __________ technique.
a. two’s complement
b. floating point
c. ASCII
d. Unicode

17. Real numbers are encoded using the __________ technique.
a. two’s complement
b. floating point
c. ASCII
d. Unicode

18. The tiny dots of color that digital images are composed of are called __________.
a. bits
b. bytes
c. color packets
d. pixels

19. If you were to look at a machine language program, you would see __________.
a. Python code
b. a stream of binary numbers
c. English words
d. circuits

20. In the __________ part of the fetch-decode-execute cycle, the CPU determines which
operation it should perform.
a. fetch
b. decode
c. execute
d. immediately after the instruction is executed

21. Computers can only execute programs that are written in __________.
a. Java
b. assembly language
c. machine language
d. Python

22. The __________ translates an assembly language program to a machine language
program.
a. assembler
b. compiler
c. translator
d. interpreter

Review Questions 27

23. The words that make up a high-level programming language are called __________.
a. binary instructions
b. mnemonics
c. commands
d. key words

24. The rules that must be followed when writing a program are called __________.
a. syntax
b. punctuation
c. key words
d. operators

25. A(n) __________ program translates a high-level language program into a separate
machine language program.
a. assembler
b. compiler
c. translator
d. utility

True or False

1. Today, CPUs are huge devices made of electrical and mechanical components such as
vacuum tubes and switches.

2. Main memory is also known as RAM.

3. Any piece of data that is stored in a computer’s memory must be stored as a binary
number.

4. Images, like the ones you make with your digital camera, cannot be stored as binary
numbers.

5. Machine language is the only language that a CPU understands.

6. Assembly language is considered a high-level language.

7. An interpreter is a program that both translates and executes the instructions in a high-
level language program.

8. A syntax error does not prevent a program from being compiled and executed.

9. Windows Vista, Linux, UNIX, and Mac OSX are all examples of application software.

10. Word processing programs, spreadsheet programs, email programs, web browsers, and
games are all examples of utility programs.

Short Answer

1. Why is the CPU the most important component in a computer?

2. What number does a bit that is turned on represent? What number does a bit that is
turned off represent?

3. What would you call a device that works with binary data?

4. What are the words that make up a high-level programming language called?

5. What are the short words that are used in assembly language called?

6. What is the difference between a compiler and an interpreter?

7. What type of software controls the internal operations of the computer’s hardware?

28 Chapter 1 Introduction to Computers and Programming

Exercises
1. To make sure that you can interact with the Python interpreter, try the following steps

on your computer:

• Start the Python interpreter in interactive mode.
• At the ��� prompt type the following statement and then press Enter:

print('This is a test of the Python interpreter.') e

• After pressing the Enter key the interpreter will execute the statement. If you typed
everything correctly, your session should look like this:

��� print('This is a test of the Python interpreter.') e
This is a test of the Python interpreter.
���

• If you see an error message, enter the statement again and make sure you type it
exactly as shown.

• Exit the Python interpreter. (In Windows, press Ctrl-Z followed by Enter. On other
systems press Ctrl-D.)

2. To make sure that you can interact with IDLE, try the following steps on your computer:

• Start IDLE. To do this in Windows, click the Start button, then All Programs. In the
Python program group click IDLE (Python GUI).

• When IDLE starts, it should appear similar to the window previously shown in
Figure 1-21. At the >>> prompt type the following statement and then press Enter:

print('This is a test of IDLE.') e

• After pressing the Enter key the Python interpreter will execute the statement. If you
typed everything correctly, your session should look like this:

��� print('This is a test of IDLE.') e
This is a test of IDLE.
���

• If you see an error message, enter the statement again and make sure you type it
exactly as shown.

• Exit IDLE by clicking File, then Exit (or pressing Ctrl-Q on the keyboard).

3. Use what you’ve learned about the binary numbering system in this chapter to convert
the following decimal numbers to binary:

11

65

100

255

4. Use what you’ve learned about the binary numbering system in this chapter to convert
the following binary numbers to decimal:

1101

1000

101011

VideoNote
Performing
Exercise 2

Exercises 29

5. Look at the ASCII chart in Appendix C and determine the codes for each letter of your
first name.

6. Use the Internet to research the history of the Python programming language, and
answer the following questions:

• Who was the creator of Python?
• When was Python created?
• In the Python programming community, the person who created Python is commonly

referred to as the “BDFL.” What does this mean?

This page intentionally left blank

31

Input, Processing,
and Output2

TOPICS

2.1 Designing a Program
2.2 Input, Processing, and Output
2.3 Displaying Output with the print

Function
2.4 Comments

2.5 Variables
2.6 Reading Input from the

Keyboard
2.7 Performing Calculations
2.8 More About Data Output

C
H

A
P

T
E

R

2.1 Designing a Program

CONCEPT: Programs must be carefully designed before they are written. During the
design process, programmers use tools such as pseudocode and flow-
charts to create models of programs.

The Program Development Cycle
In Chapter 1 you learned that programmers typically use high-level languages such as Python
to create programs. There is much more to creating a program than writing code, however.
The process of creating a program that works correctly typically requires the five phases
shown in Figure 2-1. The entire process is known as the program development cycle.

Correct
logic errors

Design the
program

Write the
code

Correct
syntax errors

Test the
program

Figure 2-1 The program development cycle

Let’s take a closer look at each stage in the cycle.

1. Design the Program All professional programmers will tell you that a program should
be carefully designed before the code is actually written. When programmers begin a

32 Chapter 2 Input, Processing, and Output

new project, they never jump right in and start writing code as the first step. They
start by creating a design of the program. There are several ways to design a program,
and later in this section we will discuss some techniques that you can use to design
your Python programs.

2. Write the Code After designing the program, the programmer begins writing code in a
high-level language such as Python. Recall from Chapter 1 that each language has its own
rules, known as syntax, that must be followed when writing a program. A language’s syn-
tax rules dictate things such as how key words, operators, and punctuation characters
can be used. A syntax error occurs if the programmer violates any of these rules.

3. Correct Syntax Errors If the program contains a syntax error, or even a simple mis-
take such as a misspelled key word, the compiler or interpreter will display an error
message indicating what the error is. Virtually all code contains syntax errors when it
is first written, so the programmer will typically spend some time correcting these.
Once all of the syntax errors and simple typing mistakes have been corrected, the pro-
gram can be compiled and translated into a machine language program (or executed
by an interpreter, depending on the language being used).

4. Test the Program Once the code is in an executable form, it is then tested to deter-
mine whether any logic errors exist. A logic error is a mistake that does not prevent
the program from running, but causes it to produce incorrect results. (Mathematical
mistakes are common causes of logic errors.)

5. Correct Logic Errors If the program produces incorrect results, the programmer
debugs the code. This means that the programmer finds and corrects logic errors in
the program. Sometimes during this process, the programmer discovers that the pro-
gram’s original design must be changed. In this event, the program development cycle
starts over, and continues until no errors can be found.

More About the Design Process
The process of designing a program is arguably the most important part of the cycle. You
can think of a program’s design as its foundation. If you build a house on a poorly con-
structed foundation, eventually you will find yourself doing a lot of work to fix the house!
A program’s design should be viewed no differently. If your program is designed poorly,
eventually you will find yourself doing a lot of work to fix the program.

The process of designing a program can be summarized in the following two steps:

1. Understand the task that the program is to perform.
2. Determine the steps that must be taken to perform the task.

Let’s take a closer look at each of these steps.

Understand the Task That the Program Is to Perform
It is essential that you understand what a program is supposed to do before you can determine
the steps that the program will perform. Typically, a professional programmer gains this under-
standing by working directly with the customer. We use the term customer to describe the
person, group, or organization that is asking you to write a program. This could be a customer
in the traditional sense of the word, meaning someone who is paying you to write a program.
It could also be your boss, or the manager of a department within your company. Regardless
of whom it is, the customer will be relying on your program to perform an important task.

2.1 Designing a Program 33

To get a sense of what a program is supposed to do, the programmer usually interviews the
customer. During the interview, the customer will describe the task that the program should
perform, and the programmer will ask questions to uncover as many details as possible about
the task. A follow-up interview is usually needed because customers rarely mention everything
they want during the initial meeting, and programmers often think of additional questions.

The programmer studies the information that was gathered from the customer during the inter-
views and creates a list of different software requirements. A software requirement is simply a
single task that the program must perform in order to satisfy the customer. Once the customer
agrees that the list of requirements is complete, the programmer can move to the next phase.

TIP: If you choose to become a professional software developer, your customer will be
anyone who asks you to write programs as part of your job. As long as you are a student,
however, your customer is your instructor! In every programming class that you will take,
it’s practically guaranteed that your instructor will assign programming problems for you
to complete. For your academic success, make sure that you understand your instructor’s
requirements for those assignments and write your programs accordingly.

Determine the Steps That Must Be Taken
to Perform the Task
Once you understand the task that the program will perform, you begin by breaking down
the task into a series of steps. This is similar to the way you would break down a task into
a series of steps that another person can follow. For example, suppose someone asks you
how to boil water. You might break down that task into a series of steps as follows:

1. Pour the desired amount of water into a pot.
2. Put the pot on a stove burner.
3. Turn the burner to high.
4. Watch the water until you see large bubbles rapidly rising. When this happens, the

water is boiling.

This is an example of an algorithm,, which is a set of well-defined logical steps that must be
taken to perform a task. Notice that the steps in this algorithm are sequentially ordered. Step 1
should be performed before step 2, and so on. If a person follows these steps exactly as they
appear, and in the correct order, he or she should be able to boil water successfully.

A programmer breaks down the task that a program must perform in a similar way. An
algorithm is created, which lists all of the logical steps that must be taken. For example,
suppose you have been asked to write a program to calculate and display the gross pay for
an hourly paid employee. Here are the steps that you would take:

1. Get the number of hours worked.
2. Get the hourly pay rate.
3. Multiply the number of hours worked by the hourly pay rate.
4. Display the result of the calculation that was performed in step 3.

Of course, this algorithm isn’t ready to be executed on the computer. The steps in this list
have to be translated into code. Programmers commonly use two tools to help them accom-
plish this: pseudocode and flowcharts. Let’s look at each of these in more detail.

34 Chapter 2 Input, Processing, and Output

Pseudocode
Because small mistakes like misspelled words and forgotten punctuation characters can cause
syntax errors, programmers have to be mindful of such small details when writing code. For
this reason, programmers find it helpful to write a program in pseudocode (pronounced “sue
doe code”) before they write it in the actual code of a programming language such as Python.

The word “pseudo” means fake, so pseudocode is fake code. It is an informal language that
has no syntax rules, and is not meant to be compiled or executed. Instead, programmers use
pseudocode to create models, or “mock-ups” of programs. Because programmers don’t have
to worry about syntax errors while writing pseudocode, they can focus all of their attention
on the program’s design. Once a satisfactory design has been created with pseudocode, the
pseudocode can be translated directly to actual code. Here is an example of how you might
write pseudocode for the pay calculating program that we discussed earlier:

Input the hours worked
Input the hourly pay rate
Calculate gross pay as hours worked multiplied by pay rate
Display the gross pay

Each statement in the pseudocode represents an operation that can be performed in Python.
For example, Python can read input that is typed on the keyboard, perform mathematical
calculations, and display messages on the screen.

Flowcharts
Flowcharting is another tool that programmers use to design programs. A flowchart is a
diagram that graphically depicts the steps that take place in a program. Figure 2-2 shows
how you might create a flowchart for the pay calculating program.

Notice that there are three types of symbols in the flowchart: ovals, parallelograms, and a
rectangle. Each of these symbols represents a step in the program, as described here:

• The ovals, which appear at the top and bottom of the flowchart, are called terminal
symbols. The Start terminal symbol marks the program’s starting point and the End
terminal symbol marks the program’s ending point.

• Parallelograms are used as input symbols and output symbols. They represent steps in
which the program reads input or displays output.

• Rectangles are used as processing symbols. They represent steps in which the program
performs some process on data, such as a mathematical calculation.

The symbols are connected by arrows that represent the “flow” of the program. To step
through the symbols in the proper order, you begin at the Start terminal and follow the
arrows until you reach the End terminal.

Checkpoint

2.1 Who is a programmer’s customer?

2.2 What is a software requirement?

2.3 What is an algorithm?

2.4 What is pseudocode?

2.2 Input, Processing, and Output 35

2.5 What is a flowchart?

2.6 What do each of the following symbols mean in a flowchart?
• Oval
• Parallelogram
• Rectangle

2.2 Input, Processing, and Output

CONCEPT: Input is data that the program receives. When a program receives data, it
usually processes it by performing some operation with it. The result of
the operation is sent out of the program as output.

Computer programs typically perform the following three-step process:

1. Input is received.
2. Some process is performed on the input.
3. Output is produced.

Input is any data that the program receives while it is running. One common form of
input is data that is typed on the keyboard. Once input is received, some process, such as

End

Start

Calculate gross pay as
hours worked multiplied

by pay rate

Input the hours worked

Input the hourly pay rate

Display the gross pay

Figure 2-2 Flowchart for the pay calculating program

36 Chapter 2 Input, Processing, and Output

a mathematical calculation, is usually performed on it. The results of the process are then
sent out of the program as output.

Figure 2-3 illustrates these three steps in the pay calculating program that we discussed ear-
lier. The number of hours worked and the hourly pay rate are provided as input. The pro-
gram processes this data by multiplying the hours worked by the hourly pay rate. The
results of the calculation are then displayed on the screen as output.

Figure 2-3 The input, processing, and output of the pay calculating program

Hours worked

Hourly pay rate

Gross pay

Input Process Output

Multiply hours worked
by hourly pay rate

In this chapter we will discuss basic ways that you can perform input, processing, and out-
put using Python.

2.3 Displaying Output with the print Function

CONCEPT: You use the print function to display output in a Python program.

A function is a piece of prewritten code that performs an operation. Python has numerous
built-in functions that perform various operations. Perhaps the most fundamental built-in
function is the print function, which displays output on the screen. Here is an example of
a statement that executes the print function:

print('Hello world')

In interactive mode, if you type this statement and press the Enter key, the message Hello
world is displayed. Here is an example:

>>> print('Hello world')
Hello world
>>>

When programmers execute a function, they say that they are calling the function. When
you call the print function, you type the word print, followed by a set of parentheses.
Inside the parentheses, you type an argument, which is the data that you want displayed on
the screen. In the previous example, the argument is 'Hello world'. Notice that the quote
marks are not displayed when the statement executes. The quote marks simply specify the
beginning and the end of the text that you wish to display.

Suppose your instructor tells you to write a program that displays your name and address
on the computer screen. Program 2-1 shows an example of such a program, with the out-
put that it will produce when it runs. (The line numbers that appear in a program listing in

VideoNote
The print Function

2.3 Displaying Output with the print Function 37

this book are not part of the program. We use the line numbers in our discussion to refer
to parts of the program.)

Program 2-1 (output.py)

1 print('Kate Austen')
2 print('123 Full Circle Drive')
3 print('Asheville, NC 28899')

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

It is important to understand that the statements in this program execute in the order that they
appear, from the top of the program to the bottom. When you run this program, the first state-
ment will execute, followed by the second statement, and followed by the third statement.

Strings and String Literals
Programs almost always work with data of some type. For example, Program 2-1 uses the
following three pieces of data:

'Kate Austen'
'123 Full Circle Drive
'Asheville, NC 28899'

These pieces of data are sequences of characters. In programming terms, a sequence of charac-
ters that is used as data is called a string. When a string appears in the actual code of a pro-
gram it is called a string literal. In Python code, string literals must be enclosed in quote marks.
As mentioned earlier, the quote marks simply mark where the string data begins and ends.

In Python you can enclose string literals in a set of single-quote marks (') or a set of double-
quote marks ("). The string literals in Program 2-1 are enclosed in single-quote marks, but
the program could also be written as shown in Program 2-2.

Program 2-2 (double_quotes.py)

1 print("Kate Austen")
2 print("123 Full Circle Drive")
3 print("Asheville, NC 28899")

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

38 Chapter 2 Input, Processing, and Output

If you want a string literal to contain either a single-quote or an apostrophe as part of the
string, you can enclose the string literal in double-quote marks. For example, Program 2-3
prints two strings that contain apostrophes.

Program 2-3 (apostrophe.py)

1 print("Don't fear!")
2 print("I'm here!")

Program Output

Don't fear!
I'm here!

Likewise, you can use single-quote marks to enclose a string literal that contains double-
quotes as part of the string. Program 2-4 shows an example.

Program 2-4 (display_quote.py)

1 print('Your assignment is to read "Hamlet" by tomorrow.')

Program Output

Your assignment is to read "Hamlet" by tomorrow.

Python also allows you to enclose string literals in triple quotes (either """ or '''). Triple-
quoted strings can contain both single quotes and double quotes as part of the string. The
following statement shows an example:

print("""I'm reading "Hamlet" tonight.""")

This statement will print

I'm reading "Hamlet" tonight.

Triple quotes can also be used to surround multiline strings, something for which single and
double quotes cannot be used. Here is an example:

print("""One
Two
Three""")

This statement will print

One
Two
Three

2.4 Comments 39

Checkpoint

2.7 Write a statement that displays your name.

2.8 Write a statement that displays the following text:

Python's the best!

2.9 Write a statement that displays the following text:

The cat said "meow."

2.4 Comments

CONCEPT: Comments are notes of explanation that document lines or sections of a
program. Comments are part of the program, but the Python interpreter
ignores them. They are intended for people who may be reading the
source code.

Comments are short notes placed in different parts of a program, explaining how those
parts of the program work. Although comments are a critical part of a program, they are
ignored by the Python interpreter. Comments are intended for any person reading a pro-
gram’s code, not the computer.

In Python you begin a comment with the # character. When the Python interpreter sees
a # character, it ignores everything from that character to the end of the line. For exam-
ple, look at Program 2-5. Lines 1 and 2 are comments that briefly explain the program’s
purpose.

Program 2-5 (comment1.py)

1 # This program displays a person's
2 # name and address.
3 print('Kate Austen')
4 print('123 Full Circle Drive')
5 print('Asheville, NC 28899')

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

Programmers commonly write end-line comments in their code. An end-line comment is a
comment that appears at the end of a line of code. It usually explains the statement that
appears in that line. Program 2-6 shows an example. Each line ends with a comment that
briefly explains what the line does.

40 Chapter 2 Input, Processing, and Output

Program 2-6 (comment2.py)

1 print('Kate Austen') # Display the name.
2 print('123 Full Circle Drive') # Display the address.
3 print('Asheville, NC 28899') # Display the city, state, and ZIP.

Program Output

Kate Austen
123 Full Circle Drive
Asheville, NC 28899

As a beginning programmer, you might be resistant to the idea of liberally writing com-
ments in your programs. After all, it can seem more productive to write code that actually
does something! It is crucial that you take the extra time to write comments, however. They
will almost certainly save you and others time in the future when you have to modify or
debug the program. Large and complex programs can be almost impossible to read and
understand if they are not properly commented.

2.5 Variables

CONCEPT: A variable is a name that represents a value stored in the computer’s
memory.

Programs usually store data in the computer’s memory and perform operations on that
data. For example, consider the typical online shopping experience: you browse a website
and add the items that you want to purchase to the shopping cart. As you add items to the
shopping cart, data about those items is stored in memory. Then, when you click the check-
out button, a program running on the website’s computer calculates the cost of all the items
you have in your shopping cart, applicable sales taxes, shipping costs, and the total of all
these charges. When the program performs these calculations, it stores the results in the
computer’s memory.

Programs use variables to access and manipulate data that is stored in memory. A
variable is a name that represents a value in the computer’s memory. For example, a pro-
gram that calculates the sales tax on a purchase might use the variable name tax to rep-
resent that value in memory. And a program that calculates the distance between two
cities might use the variable name distance to represent that value in memory. When
a variable represents a value in the computer’s memory, we say that the variable
references the value.

Creating Variables with Assignment Statements
You use an assignment statement to create a variable and make it reference a piece of data.
Here is an example of an assignment statement:

age = 25

2.5 Variables 41

After this statement executes, a variable named age will be created and it will reference the
value 25. This concept is shown in Figure 2-4. In the figure, think of the value 25 as being
stored somewhere in the computer’s memory. The arrow that points from age to the value
25 indicates that the name age references the value.

25age

Figure 2-4 The age variable references the value 25

An assignment statement is written in the following general format:

variable = expression

The equal sign (�) is known as the assignment operator. In the general format, variable is the
name of a variable and expression is a value, or any piece of code that results in a value. After
an assignment statement executes, the variable listed on the left side of the � operator will ref-
erence the value given on the right side of the � operator.

To experiment with variables, you can type assignment statements in interactive mode, as
shown here:

>>> width = 10 e
>>> length = 5 e

>>>

The first statement creates a variable named width and assigns it the value 10. The sec-
ond statement creates a variable named length and assigns it the value 5. Next, you can
use the print function to display the values referenced by these variables, as shown
here:

>>> print(width) e

10
>>> print(length) e

5
>>>

When you pass a variable as an argument to the print function, you do not enclose
the variable name in quote marks. To demonstrate why, look at the following interactive
session:

>>> print('width') e

width
>>> print(width) e

10
>>>

In the first statement, you passed 'width' as an argument to the print function, and the
function printed the string width. In the second statement, you passed width (with no
quote marks) as an argument to the print function, and the function displayed the value
referenced by the width variable.

42 Chapter 2 Input, Processing, and Output

In an assignment statement, the variable that is receiving the assignment must appear on
the left side of the = operator. As shown in the following interactive session, an error occurs
if the item on the left side of the = operator is not a variable:

>>> 25 = age e

SyntaxError: can't assign to literal
>>>

The code in Program 2-7 demonstrates a variable. Line 2 creates a variable named room
and assigns it the value 503. The statements in lines 3 and 4 display a message. Notice that
line 4 displays the value that is referenced by the room variable.

Program 2-7 (variable_demo.py)

1 # This program demonstrates a variable.
2 room = 503
3 print('I am staying in room number')
4 print(room)

Program Output

I am staying in room number
503

Program 2-8 shows a sample program that uses two variables. Line 2 creates a variable
named top_speed, assigning it the value 160. Line 3 creates a variable named distance,
assigning it the value 300. This is illustrated in Figure 2-5.

Program 2-8 (variable_demo2.py)

1 # Create two variables: top_speed and distance.
2 top_speed = 160
3 distance = 300
4
5 # Display the values referenced by the variables.
6 print('The top speed is')
7 print(top_speed)
8 print('The distance traveled is')
9 print(distance)

Program Output

The top speed is
160
The distance traveled is
300

2.5 Variables 43

Variable Naming Rules
Although you are allowed to make up your own names for variables, you must follow these
rules:

• You cannot use one of Python’s key words as a variable name. (See Table 1-2 for a list
of the key words.)

• A variable name cannot contain spaces.
• The first character must be one of the letters a through z, A through Z, or an under-

score character (_).
• After the first character you may use the letters a through z or A through Z, the dig-

its 0 through 9, or underscores.
• Uppercase and lowercase characters are distinct. This means the variable name

ItemsOrdered is not the same as itemsordered.

In addition to following these rules, you should always choose names for your variables
that give an indication of what they are used for. For example, a variable that holds the tem-
perature might be named temperature, and a variable that holds a car’s speed might be
named speed. You may be tempted to give variables names like x and b2, but names like
these give no clue as to what the variable’s purpose is.

WARNING! You cannot use a variable until you have assigned a value to it. An
error will occur if you try to perform an operation on a variable, such as printing it,
before it has been assigned a value.

Sometimes a simple typing mistake will cause this error. One example is a misspelled
variable name, as shown here:

temperature = 74.5 # Create a variable
print(tempereture) # Error! Misspelled variable name

In this code, the variable temperature is created by the assignment statement. The
variable name is spelled differently in the print statement, however, which will cause
an error. Another example is the inconsistent use of uppercase and lowercase letters in
a variable name. Here is an example:

temperature = 74.5 # Create a variable
print(Temperature) # Error! Inconsistent use of case

In this code the variable temperature (in all lowercase letters) is created by the assign-
ment statement. In the print statement, the name Temperature is spelled with an
uppercase T. This will cause an error because variable names are case sensitive in Python.

160top_speed

300distance

Figure 2-5 Two variables

44 Chapter 2 Input, Processing, and Output

Table 2-1 lists several sample variable names and indicates whether each is legal or illegal
in Python.

NOTE: This style of naming is called camelCase because the uppercase characters
that appear in a name may suggest a camel’s humps.

Table 2-1 Sample variable names

Variable Name Legal or Illegal?

units_per_day Legal

dayOfWeek Legal

3dGraph Illegal. Variable names cannot begin with a digit.

June1997 Legal

Mixture#3 Illegal. Variable names may only use letters, digits, or underscores.

Because a variable’s name should reflect the variable’s purpose, programmers often find
themselves creating names that are made of multiple words. For example, consider the fol-
lowing variable names:

grosspay
payrate
hotdogssoldtoday

Unfortunately, these names are not easily read by the human eye because the words aren’t
separated. Because we can’t have spaces in variable names, we need to find another way
to separate the words in a multiword variable name, and make it more readable to the
human eye.

One way to do this is to use the underscore character to represent a space. For example,
the following variable names are easier to read than those previously shown:

gross_pay
pay_rate
hot_dogs_sold_today

This style of naming variables is popular among Python programmers and is the style we
will use in this book. There are other popular styles, however, such as the camelCase
naming convention. camelCase names are written in the following manner:

• The variable name begins with lowercase letters.
• The first character of the second and subsequent words is written in uppercase.

For example, the following variable names are written in camelCase:

grossPay
payRate
hotDogsSoldToday

2.5 Variables 45

Displaying Multiple Items with the print Function
If you refer to Program 2-7 you will see that we used the following two statements in lines
3 and 4:

print('I am staying in room number')
print(room)

We called the print function twice because we needed to display two pieces of data. Line
3 displays the string literal 'I am staying in room number', and line 4 displays the
value referenced by the room variable.

This program can be simplified, however, because Python allows us to display multiple
items with one call to the print function. We simply have to separate the items with com-
mas as shown in Program 2-9.

Program 2-9 (variable_demo3.py)

1 # This program demonstrates a variable.
2 room = 503
3 print('I am staying in room number', room)

Program Output

I am staying in room number 503

In line 3 we passed two arguments to the print function. The first argument is the string
literal 'I am staying in room number', and the second argument is the room variable.
When the print function executed, it displayed the values of the two arguments in the order
that we passed them to the function. Notice that the print function automatically printed
a space separating the two items. When multiple arguments are passed to the print func-
tion, they are automatically separated by a space when they are displayed on the screen.

Variable Reassignment
Variables are called “variable” because they can reference different values while a program is
running. When you assign a value to a variable, the variable will reference that value until you
assign it a different value. For example, look at Program 2-10. The statement in line 3 creates
a variable named dollars and assigns it the value 2.75. This is shown in the top part of Figure
2-6. Then, the statement in line 8 assigns a different value, 99.95, to the dollars variable. The
bottom part of Figure 2-6 shows how this changes the dollars variable. The old value, 2.75,
is still in the computer’s memory, but it can no longer be used because it isn’t referenced by a
variable. When a value in memory is no longer referenced by a variable, the Python interpreter
automatically removes it from memory through a process known as garbage collection.

Program 2-10 (variable_demo4.py)

1 # This program demonstrates variable reassignment.
2 # Assign a value to the dollars variable.
3 dollars = 2.75

(program continues)

46 Chapter 2 Input, Processing, and Output

Program 2-10 (continued)

4 print('I have', dollars, 'in my account.')
5
6 # Reassign dollars so it references
7 # a different value.
8 dollars = 99.95
9 print('But now I have', dollars, 'in my account!')

Program Output

I have 2.75 in my account.
But now I have 99.95 in my account!

dollars

99.95

2.75

dollars 2.75

The dollars variable after line 3 executes.

The dollars variable after line 8 executes.

Figure 2-6 Variable reassignment in Program 2-10

Numeric Data Types and Literals
In Chapter 1 we discussed the way that computers store data in memory. (See section 1.3)
You might recall from that discussion that computers use a different technique for storing
real numbers (numbers with a fractional part) than for storing integers. Not only are these
types of numbers stored differently in memory, but similar operations on them are carried
out in different ways.

Because different types of numbers are stored and manipulated in different ways, Python
uses data types to categorize values in memory. When an integer is stored in memory, it is
classified as an int, and when a real number is stored in memory, it is classified as a float.

Let’s look at how Python determines the data type of a number. Several of the programs
that you have seen so far have numeric data written into their code. For example, the fol-
lowing statement, which appears in Program 2-9, has the number 503 written into it.

room = 503

This statement causes the value 503 to be stored in memory, and it makes the room vari-
able reference it. The following statement, which appears in Program 2-10, has the number
2.75 written into it.

dollars = 2.75

This statement causes the value 2.75 to be stored in memory, and it makes the dollars
variable reference it. A number that is written into a program’s code is called a numeric

2.5 Variables 47

literal. When the Python interpreter reads a numeric literal in a program’s code, it deter-
mines its data type according to the following rules:

• A numeric literal that is written as a whole number with no decimal point is consid-
ered an int. Examples are 7, 124, and �9.

• A numeric literal that is written with a decimal point is considered a float. Examples
are 1.5, 3.14159, and 5.0.

So, the following statement causes the number 503 to be stored in memory as an int:

room = 503

And the following statement causes the number 2.75 to be stored in memory as a float:

dollars = 2.75

When you store an item in memory, it is important for you to be aware of the item’s data
type. As you will see, some operations behave differently depending on the type of data
involved, and some operations can only be performed on values of a specific data type.

As an experiment, you can use the built-in type function in interactive mode to determine
the data type of a value. For example, look at the following session:

>>> type(1) e
<class 'int'>
>>>

In this example, the value 1 is passed as an argument to the type function. The message
that is displayed on the next line, <class 'int'>, indicates that the value is an int. Here
is another example:

>>> type(1.0) e
<class 'float'>
>>>

In this example, the value 1.0 is passed as an argument to the type function. The message
that is displayed on the next line, <class 'float'>, indicates that the value is a float.

WARNING! You cannot write currency symbols, spaces, or commas in numeric lit-
erals. For example, the following statement will cause an error:

value = $4,567.99 # Error!

This statement must be written as:

value = 4567.99 # Correct

Storing Strings with the str Data Type
In addition to the int and float data types, Python also has a data type named str, which
is used for storing strings in memory. The code in Program 2-11 shows how strings can be
assigned to variables.

48 Chapter 2 Input, Processing, and Output

Program 2-11 (string_variable.py)

1 # Create variables to reference two strings.
2 first_name = 'Kathryn'
3 last_name = 'Marino'
4
5 # Display the values referenced by the variables.
6 print(first_name, last_name)

Program Output

Kathryn Marino

Reassigning a Variable to a Different Type
Keep in mind that in Python, a variable is a just a name that refers to a piece of data in
memory. It is a mechanism that makes it easy for you, the programmer, to store and retrieve
data. Internally, the Python interpreter keeps track of the variable names that you create
and the pieces of data to which those variable names refer. Any time you need to retrieve
one of those pieces of data, you simply use the variable name that refers to it.

A variable in Python can refer to items of any type. After a variable has been assigned an
item of one type, it can be reassigned an item of a different type. To demonstrate, look at
the following interactive session. (We have added line numbers for easier reference.)

1 >>> x = 99 e
2 >>> print(x) e
3 99
4 >>> x = 'Take me to your leader' e
5 >>> print(x) e
6 Take me to your leader.
7 >>>

The statement in line 1 creates a variable named x and assigns it the int value 99. Figure 2-7
shows how the variable x references the value 99 in memory. The statement in line 2 calls
the print function, passing x as an argument. The output of the print function is shown
in line 3. Then, the statement in line 4 assigns a string to the x variable. After this statement
executes, the x variable no longer refers to an int, but to the string 'Take me to your
leader'. This is shown in Figure 2-8. Line 5 calls the print function again, passing x as
an argument. Line 6 shows the print function’s output.

Figure 2-7 The variable x references an integer

Figure 2-8 The variable x references a string

99x

Take me to your leader

99x

2.6 Reading Input from the Keyboard 49

Checkpoint

2.10 What is a variable?

2.11 Which of the following are illegal variable names in Python, and why?

x
99bottles
july2009
theSalesFigureForFiscalYear
r&d
grade_report

2.12 Is the variable name Sales the same as sales? Why or why not?

2.13 Is the following assignment statement valid or invalid? If it is invalid, why?

72 = amount

2.14 What will the following code display?

val = 99
print('The value is', 'val')

2.15 Look at the following assignment statements:

value1 = 99
value2 = 45.9
value3 = 7.0
value4 = 7
value5 = 'abc'

After these statements execute, what is the Python data type of the values referenced
by each variable?

2.16 What will be displayed by the following program?

my_value = 99
my_value = 0
print(my_value)

2.6 Reading Input from the Keyboard

CONCEPT: Programs commonly need to read input typed by the user on the key-
board. We will use the Python functions to do this.

Most of the programs that you will write will need to read input, and then perform an oper-
ation on that input. In this section, we will discuss a basic input operation: reading data
that has been typed on the keyboard. When a program reads data from the keyboard, usu-
ally it stores that data in a variable so it can be used later by the program.

In this book we use Python’s built-in input function to read input from the keyboard. The
input function reads a piece of data that has been entered at the keyboard and returns that
piece of data, as a string, back to the program. You normally use the input function in an
assignment statement that follows this general format:

variable = input(prompt)

VideoNote
Reading Input
from the Keyboard

50 Chapter 2 Input, Processing, and Output

In the general format, prompt is a string that is displayed on the screen. The string’s pur-
pose is to instruct the user to enter a value; variable is the name of a variable that refer-
ences the data that was entered on the keyboard. Here is an example of a statement that
uses the input function to read data from the keyboard:

name = input('What is your name? ')

When this statement executes, the following things happen:

• The string 'What is your name? ' is displayed on the screen.
• The program pauses and waits for the user to type something on the keyboard and

then to press the Enter key.
• When the Enter key is pressed, the data that was typed is returned as a string and

assigned to the name variable.

To demonstrate, look at the following interactive session:

>>> name = input('What is your name? ') e
What is your name? Holly e
>>> print(name) e
Holly
>>>

When the first statement was entered, the interpreter displayed the prompt 'What is
your name? ' and waited for the user to enter some data. The user entered Holly and
pressed the Enter key. As a result, the string 'Holly' was assigned to the name variable.
When the second statement was entered, the interpreter displayed the value referenced by
the name variable.

Program 2-12 shows a complete program that uses the input function to read two strings
as input from the keyboard.

Program 2-12 (string_input.py)

1 # Get the user's first name.
2 first_name = input('Enter your first name: ')
3
4 # Get the user's last name.
5 last_name = input('Enter your last name: ')
6
7 # Print a greeting to the user.
8 print('Hello', first_name, last_name)

Program Output (with input shown in bold)

Enter your first name: Vinny e

Enter your last name: Brown e

Hello Vinny Brown

Take a closer look in line 2 at the string we used as a prompt:

'Enter your first name: '

Notice that the last character in the string, inside the quote marks, is a space. The same is
true for the following string, used as prompt in line 5:

'Enter your last name: '

We put a space character at the end of each string because the input function does not
automatically display a space after the prompt. When the user begins typing characters,
they appear on the screen immediately after the prompt. Making the last character in the
prompt a space visually separates the prompt from the user’s input on the screen.

Reading Numbers with the input Function
The input function always returns the user’s input as a string, even if the user enters
numeric data. For example, suppose you call the input function, type the number 72, and
press the Enter key. The value that is returned from the input function is the string '72'.
This can be a problem if you want to use the value in a math operation. Math operations
can be performed only on numeric values, not strings.

Fortunately, Python has built-in functions that you can use to convert a string to a numeric
type. Table 2-2 summarizes two of these functions.

Table 2-2 Data Conversion Functions

Function Description

int(item) You pass an argument to the int() function and it returns the argument’s
value converted to an int.

float(item) You pass an argument to the float() function and it returns the argument’s
value converted to a float.

For example, suppose you are writing a payroll program and you want to get the number
of hours that the user has worked. Look at the following code:

string_value = input('How many hours did you work? ')
hours = int(string_value)

The first statement gets the number of hours from the user and assigns that value as a string
to the string_value variable. The second statement calls the int() function, passing
string_value as an argument. The value referenced by string_value is converted to an
int and assigned to the hours variable.

This example illustrates how the int() function works, but it is inefficient because it cre-
ates two variables: one to hold the string that is returned from the input function and
another to hold the integer that is returned from the int() function. The following code
shows a better approach. This one statement does all the work that the previously shown
two statements do, and it creates only one variable:

hours = int(input('How many hours did you work? '))

2.6 Reading Input from the Keyboard 51

52 Chapter 2 Input, Processing, and Output

This one statement uses nested function calls. The value that is returned from the input
function is passed as an argument to the int() function. This is how it works:

• It calls the input function to get a value entered at the keyboard.
• The value that is returned from the input function (a string) is passed as an argument

to the int() function.
• The int value that is returned from the int() function is assigned to the hours variable.

After this statement executes, the hours variable is assigned the value entered at the key-
board, converted to an int.

Let’s look at another example. Suppose you want to get the user’s hourly pay rate. The fol-
lowing statement prompts the user to enter that value at the keyboard, converts the value
to a float, and assigns it to the pay_rate variable:

pay_rate = float(input('What is your hourly pay rate? '))

This is how it works:

• It calls the input function to get a value entered at the keyboard.
• The value that is returned from the input function (a string) is passed as an argument

to the float() function.
• The float value that is returned from the float() function is assigned to the

pay_rate variable.

After this statement executes, the pay_rate variable is assigned the value entered at the
keyboard, converted to a float.

Program 2-13 shows a complete program that uses the input function to read a string, an
int, and a float, as input from the keyboard.

Program 2-13 (input.py)

1 # Get the user's name, age, and income.
2 name = input('What is your name? ')
3 age = int(input('What is your age? '))
4 income = float(input('What is your income? '))
5
6 # Display the data.
7 print('Here is the data you entered:')
8 print('Name:', name)
9 print('Age:', age)

10 print('Income:', income)

Program Output (with input shown in bold)

What is your name? Chris e

What is your age? 25 e

What is your income? 75000.0
Here is the data you entered:
Name: Chris
Age: 25
Income: 75000.0

Let’s take a closer look at the code:

• Line 2 prompts the user to enter his or her name. The value that is entered is assigned,
as a string, to the name variable.

• Line 3 prompts the user to enter his or her age. The value that is entered is converted
to an int and assigned to the age variable.

• Line 4 prompts the user to enter his or her income. The value that is entered is con-
verted to a float and assigned to the income variable.

• Lines 7 through 10 display the values that the user entered.

The int() and float() functions work only if the item that is being converted contains a
valid numeric value. If the argument cannot be converted to the specified data type, an error
known as an exception occurs. An exception is an unexpected error that occurs while a pro-
gram is running, causing the program to halt if the error is not properly dealt with. For
example, look at the following interactive mode session:

>>> age = int(input('What is your age? ')) e
What is your age? xyz e
Traceback (most recent call last):

File "<pyshell#81>", line 1, in <module>
age = int(input('What is your age? '))

ValueError: invalid literal for int() with base 10: 'xyz'
>>>

NOTE: In this section, we mentioned the user. The user is simply any hypothetical
person that is using a program and providing input for it. The user is sometimes called
the end user.

Checkpoint

2.17 You need the user of a program to enter a customer’s last name. Write a statement
that prompts the user to enter this data and assigns the input to a variable.

2.18 You need the user of a program to enter the amount of sales for the week. Write a
statement that prompts the user to enter this data and assigns the input to a
variable.

2.7 Performing Calculations

CONCEPT: Python has numerous operators that can be used to perform mathemati-
cal calculations.

Most real-world algorithms require calculations to be performed. A programmer’s tools for
performing calculations are math operators. Table 2-3 lists the math operators that are pro-
vided by the Python language.

Programmers use the operators shown in Table 2-3 to create math expressions. A math
expression performs a calculation and gives a value. The following is an example of a sim-
ple math expression:

12 + 2

2.7 Performing Calculations 53

54 Chapter 2 Input, Processing, and Output

The values on the right and left of the + operator are called operands. These are values that
the + operator adds together. If you type this expression in interactive mode, you will see
that it gives the value 14:

>>> 12 + 2 e
14
>>>

Variables may also be used in a math expression. For example, suppose we have two vari-
ables named hours and pay_rate. The following math expression uses the * operator to
multiply the value referenced by the hours variable by the value referenced by the
pay_rate variable:

hours * pay_rate

When we use a math expression to calculate a value, normally we want to save that value
in memory so we can use it again in the program. We do this with an assignment statement.
Program 2-14 shows an example.

Program 2-14 (simple_math.py)

1 # Assign a value to the salary variable.
2 salary = 2500.0
3
4 # Assign a value to the bonus variable.
5 bonus = 1200.0
6
7 # Calculate the total pay by adding salary
8 # and bonus. Assign the result to pay.
9 pay = salary + bonus

10
11 # Display the pay.
12 print('Your pay is', pay)

Program Output

Your pay is 3700.0

Table 2-3 Python math operators

Symbol Operation Description

+ Addition Adds two numbers
_ Subtraction Subtracts one number from another
* Multiplication Multiplies one number by another
/ Division Divides one number by another and gives the result as a

floating-point number
// Integer division Divides one number by another and gives the result as

an integer
% Remainder Divides one number by another and gives the remainder
** Exponent Raises a number to a power

Line 2 assigns 2500.0 to the salary variable, and line 5 assigns 1200.0 to the bonus vari-
able. Line 9 assigns the result of the expression salary + bonus to the pay variable. As
you can see from the program output, the pay variable holds the value 3700.0.

In the Spotlight:
Calculating a Percentage
If you are writing a program that works with a percentage, you have to make sure that the
percentage’s decimal point is in the correct location before doing any math with the per-
centage. This is especially true when the user enters a percentage as input. Most users enter
the number 50 to mean 50 percent, 20 to mean 20 percent, and so forth. Before you per-
form any calculations with such a percentage, you have to divide it by 100 to move its dec-
imal point two places to the left.

Let’s step through the process of writing a program that calculates a percentage. Suppose a
retail business is planning to have a storewide sale where the prices of all items will be 20
percent off. We have been asked to write a program to calculate the sale price of an item
after the discount is subtracted. Here is the algorithm:

1. Get the original price of the item.
2. Calculate 20 percent of the original price. This is the amount of the discount.
3. Subtract the discount from the original price. This is the sale price.
4. Display the sale price.

In step 1 we get the original price of the item. We will prompt the user to enter this data
on the keyboard. In our program we will use the following statement to do this. Notice that
the value entered by the user will be stored in a variable named original_price.

original_price = float(input("Enter the item's original price: "))

In step 2, we calculate the amount of the discount. To do this we multiply the original price
by 20 percent. The following statement performs this calculation and assigns the result to
the discount variable.

discount = original_price * 0.2

In step 3, we subtract the discount from the original price. The following statement does
this calculation and stores the result in the sale_price variable.

sale_price = original_price – discount

Last, in step 4, we will use the following statement to display the sale price:

print('The sale price is', sale_price)

Program 2-15 shows the entire program, with example output.

Program 2-15 (sale_price.py)

1 # This program gets an item's original price and
2 # calculates its sale price, with a 20% discount.
3

2.7 Performing Calculations 55

(program continues)

Program 2-15 (continued)

4 # Get the item's original price.
5 original_price = float(input("Enter the item's original price: "))
6
7 # Calculate the amount of the discount.
8 discount = original_price * 0.2
9

10 # Calculate the sale price.
11 sale_price = original_price - discount
12
13 # Display the sale price.
14 print('The sale price is', sale_price)

Program Output (with input shown in bold)

Enter the item's original price: 100.00 e

The sale price is 80.0

56 Chapter 2 Input, Processing, and Output

Floating-Point and Integer Division
Notice in Table 2-3 that Python has two different division operators. The / operator per-
forms floating-point division, and the // operator performs integer division. Both opera-
tors divide one number by another. The difference between them is that the / operator gives
the result as a floating-point value, and the // operator gives the result as an integer. Let’s
use the interactive mode interpreter to demonstrate:

>>> 5 / 2 e
2.5
>>>

In this session we used the / operator to divide 5 by 2. As expected, the result is 2.5. Now
let’s use the // operator to perform integer division:

>>> 5 // 2 e

2
>>>

As you can see, the result is 2. The // operator works like this:

• When the result is positive, it is truncated, which means that its fractional part is
thrown away.

• When the result is negative, it is rounded away from zero to the nearest integer.

The following interactive session demonstrates how the // operator works when the result
is negative:

>>> -5 // 2 e

-3
>>>

2.7 Performing Calculations 57

Operator Precedence
You can write statements that use complex mathematical expressions involving several
operators. The following statement assigns the sum of 17, the variable x, 21, and the vari-
able y to the variable answer.

answer = 17 + x + 21 + y

Some expressions are not that straightforward, however. Consider the following statement:

outcome = 12.0 + 6.0 / 3.0

What value will be assigned to outcome? The number 6.0 might be used as an operand
for either the addition or division operator. The outcome variable could be assigned
either 6.0 or 14.0, depending on when the division takes place. Fortunately, the answer
can be predicted because Python follows the same order of operations that you learned
in math class.

First, operations that are enclosed in parentheses are performed first. Then, when two oper-
ators share an operand, the operator with the higher precedence is applied first. The prece-
dence of the math operators, from highest to lowest, are:

1. Exponentiation: **
2. Multiplication, division, and remainder: * / // %
3. Addition and subtraction: � �

Notice that the multiplication (*), floating-point division (/), integer division (//), and
remainder (%) operators have the same precedence. The addition (�) and subtraction (�)
operators also have the same precedence. When two operands with the same precedence
share an operand, the operators execute from left to right.

Now, let’s go back to the previous math expression:

outcome = 12.0 + 6.0 / 3.0

The value that will be assigned to outcome is 14.0 because the division operator has a higher
precedence than the addition operator. As a result, the division takes place before the
addition. The expression can be diagrammed as shown in Figure 2-9.

outcome = 12.0 + 6.0 / 3.0

outcome = 14.0

outcome = 12.0 + 2.0

Figure 2-9 Operator precedence

Table 2-4 shows some other sample expressions with their values.

58 Chapter 2 Input, Processing, and Output

Table 2-4 Some expressions

Expression Value
5 + 2 * 4 13

10 / 2 – 3 2

8 + 12 * 2 – 4 28

6 – 3 * 2 + 7 – 1 6

Grouping with Parentheses
Parts of a mathematical expression may be grouped with parentheses to force some opera-
tions to be performed before others. In the following statement, the variables a and b are
added together, and their sum is divided by 4:

result = (a + b) / 4

Without the parentheses, however, b would be divided by 4 and the result added to a.
Table 2-5 shows more expressions and their values.

Table 2-5 More expressions and their values

Expression Value

(5 + 2) * 4 28

10 / (5 – 3) 5

8 + 12 * (6 – 2) 56

(6 – 3) * (2 + 7) / 3 9

In the Spotlight:
Calculating an Average
Determining the average of a group of values is a simple calculation: add all of the values
and then divide the sum by the number of values. Although this is a straightforward calcu-
lation, it is easy to make a mistake when writing a program that calculates an average. For
example, let’s assume that the variables a, b, and c each hold a value and we want to cal-
culate the average of those values. If we are careless, we might write a statement such as
the following to perform the calculation:

average = a + b + c / 3.0

Can you see the error in this statement? When it executes, the division will take place first.
The value in c will be divided by 3, and then the result will be added to a + b. That is not
the correct way to calculate an average. To correct this error we need to put parentheses
around a + b + c, as shown here:

average = (a + b + c) / 3.0

2.7 Performing Calculations 59

Let’s step through the process of writing a program that calculates an average. Suppose you
have taken three tests in your computer science class, and you want to write a program that
will display the average of the test scores. Here is the algorithm:

1. Get the first test score.
2. Get the second test score.
3. Get the third test score.
4. Calculate the average by adding the three test scores and dividing the sum by 3.
5. Display the average.

In steps 1, 2, and 3 we will prompt the user to enter the three test scores. We will store those
test scores in the variables test1, test2, and test3. In step 4 we will calculate the aver-
age of the three test scores. We will use the following statement to perform the calculation
and store the result in the average variable:

average = (test1 + test2 + test3) / 3.0

Last, in step 5, we display the average. Program 2-16 shows the program.

Program 2-16 (test_score_average.py)

1 # Get three test scores and assign them to the
2 # test1, test2, and test3 variables.
3 test1 = float(input('Enter the first test score: '))
4 test2 = float(input('Enter the second test score: '))
5 test3 = float(input('Enter the third test score: '))
6
7 # Calculate the average of the three scores
8 # and assign the result to the average variable.
9 average = (test1 + test2 + test3) / 3.0

10
11 # Display the average.
12 print('The average score is', average)

Program Output (with input shown in bold)

Enter the first test score: 90 e
Enter the second test score: 80 e
Enter the third test score: 100 e
The average score is 90.0

The Exponent Operator
In addition to the basic math operators for addition, subtraction, multiplication, and division,
Python also provides an exponent operator. Two asterisks written together (**) is the exponent
operator, and its purpose it to raise a number to a power. For example, the following statement
raises the length variable to the power of 2 and assigns the result to the area variable:

area = length**2

60 Chapter 2 Input, Processing, and Output

The following session with the interactive interpreter shows the values of the expressions
4**2, 5**3, and 2**10:

>>> 4**2 e
16
>>> 5**3 e
125
>>> 2**10 e
1024
>>>

The Remainder Operator
In Python, the % symbol is the remainder operator. (This is also known as the modulus
operator.) The remainder operator performs division, but instead of returning the quotient,
it returns the remainder. The following statement assigns 2 to leftover:

leftover = 17 % 3

This statement assigns 2 to leftover because 17 divided by 3 is 5 with a remainder of 2. The
remainder operator is useful in certain situations. It is commonly used in calculations that
convert times or distances, detect odd or even numbers, and perform other specialized oper-
ations. For example, Program 2-17 gets a number of seconds from the user, and it converts
that number of seconds to hours, minutes, and seconds. For example, it would convert
11,730 seconds to 3 hours, 15 minutes, and 30 seconds.

Program 2-17 (time_converter.py)

1 # Get a number of seconds from the user.
2 total_seconds = float(input('Enter a number of seconds: '))
3
4 # Get the number of hours.
5 hours = total_seconds // 3600
6
7 # Get the number of remaining minutes.
8 minutes = (total_seconds // 60) % 60
9

10 # Get the number of remaining seconds.
11 seconds = total_seconds % 60
12
13 # Display the results.
14 print('Here is the time in hours, minutes, and seconds:')
15 print('Hours:', hours)
16 print('Minutes:', minutes);
17 print('Seconds:', seconds)

Program Output (with input shown in bold)

Enter a number of seconds: 11730 e

Here is the time in hours, minutes, and seconds:

2.7 Performing Calculations 61

Hours: 3.0
Minutes: 15.0
Seconds: 30.0

Let’s take a closer look at the code:

• Line 2 gets a number of seconds from the user, converts the value to a float, and
assigns it to the total_seconds variable.

• Line 5 calculates the number of hours in the specified number of seconds. There are
3600 seconds in an hour, so this statement divides total_seconds by 3600. Notice
that we used the integer division operator (//) operator. This is because we want the
number of hours with no fractional part.

• Line 8 calculates the number of remaining minutes. This statement first uses the //
operator to divide total_seconds by 60. This gives us the total number of minutes.
Then, it uses the % operator to divide the total number of minutes by 60 and get the
remainder of the division. The result is the number of remaining minutes.

• Line 11 calculates the number of remaining seconds. There are 60 seconds in a
minute, so this statement uses the % operator to divide the total_seconds by 60 and
get the remainder of the division. The result is the number of remaining seconds.

• Lines 14 through 17 display the number of hours, minutes, and seconds.

Converting Math Formulas to Programming Statements
You probably remember from algebra class that the expression 2xy is understood to mean
2 times x times y. In math, you do not always use an operator for multiplication. Python,
as well as other programming languages, requires an operator for any mathematical oper-
ation. Table 2-6 shows some algebraic expressions that perform multiplication and the
equivalent programming expressions.

Table 2-6 Algebraic expressions

Algebraic Expression Operation Being Performed Programming Expression

6B 6 times B 6 * B

(3)(12) 3 times 12 3 * 12

4xy 4 times x times y 4 * x * y

When converting some algebraic expressions to programming expressions, you may have
to insert parentheses that do not appear in the algebraic expression. For example, look at
the following formula:

To convert this to a programming statement, a + b will have to be enclosed in parentheses:

x = (a + b) / c

Table 2-7 shows additional algebraic expressions and their Python equivalents.

x = a + b
c

62 Chapter 2 Input, Processing, and Output

Table 2-7 Algebraic and programming expressions

Algebraic Expression Python Statement

y = 3
x
2

y = 3 * x / 2

z = 3bc + 4 z = 3 * b * c + 4

a = x + 2

b - 1
a = (x + 2) / (b - 1)

In the Spotlight:
Converting a Math Formula to a
Programming Statement
Suppose you want to deposit a certain amount of money into a savings account, and then
leave it alone to draw interest for the next 10 years. At the end of 10 years you would like
to have $10,000 in the account. How much do you need to deposit today to make that hap-
pen? You can use the following formula to find out:

The terms in the formula are as follows:

• P is the present value, or the amount that you need to deposit today.
• F is the future value that you want in the account. (In this case, F is $10,000.)
• r is the annual interest rate.
• n is the number of years that you plan to let the money sit in the account.

It would be convenient to write a computer program to perform the calculation, because then
we can experiment with different values for the variables. Here is an algorithm that we can use:

1. Get the desired future value.
2. Get the annual interest rate.
3. Get the number of years that the money will sit in the account.
4. Calculate the amount that will have to be deposited.
5. Display the result of the calculation in step 4.

In steps 1 through 3, we will prompt the user to enter the specified values. We will assign
the desired future value to a variable named future_value, the annual interest rate to a
variable named rate, and the number of years to a variable named years.

In step 4, we calculate the present value, which is the amount of money that we will have
to deposit. We will convert the formula previously shown to the following statement. The
statement stores the result of the calculation in the present_value variable.

present_value = future_value / (1.0 + rate)**years

In step 5, we display the value in the present_value variable. Program 2-18 shows the
program.

P =
F

(1 + r)n

2.7 Performing Calculations 63

Program 2-18 (future_value.py)

1 # Get the desired future value.
2 future_value = float(input('Enter the desired future value: '))
3
4 # Get the annual interest rate.
5 rate = float(input('Enter the annual interest rate: '))
6
7 # Get the number of years that the money will appreciate.
8 years = int(input('Enter the number of years the money will grow: '))
9

10 # Calculate the amount needed to deposit.
11 present_value = future_value / (1.0 + rate)**years
12
13 # Display the amount needed to deposit.
14 print('You will need to deposit this amount:', present_value)

Program Output

Enter the desired future value: 10000.0 e

Enter the annual interest rate: 0.05 e

Enter the number of years the money will grow: 10 e

You will need to deposit this amount: 6139.13253541

Mixed-Type Expressions and Data Type Conversion
When you perform a math operation on two operands, the data type of the result will
depend on the data type of the operands. Python follows these rules when evaluating math-
ematical expressions:

• When an operation is performed on two int values, the result will be an int.
• When an operation is performed on two float values, the result will be a float.
• When an operation is performed on an int and a float, the int value will be temporar-

ily converted to a float and the result of the operation will be a float. (An expression
that uses operands of different data types is called a mixed-type expression.)

The first two situations are straightforward: operations on ints produce ints, and oper-
ations on floats produce floats. Let’s look at an example of the third situation, which
involves mixed-type expressions:

my_number = 5 * 2.0

When this statement executes, the value 5 will be converted to a float (5.0) and then mul-
tiplied by 2.0. The result, 10.0, will be assigned to my_number.

NOTE: Unlike the output shown for this program, dollar amounts are usually rounded
to two decimal places. Later in this chapter you will learn how to format numbers so
they are rounded to a specified number of decimal places.

The int to float conversion that takes place in the previous statement happens implicitly.
If you need to explicitly perform a conversion, you can use either the int() or float()
functions. For example, you can use the int() function to convert a floating-point value to
an integer, as shown in the following code:

fvalue = 2.6
ivalue = int(fvalue)

The first statement assigns the value 2.6 to the fvalue variable. The second statement passes
fvalue as an argument to the int() function. The int() function returns the value 2,
which is assigned to the ivalue variable. After this code executes, the fvalue variable is
still assigned the value 2.6, but the ivalue variable is assigned the value 2.

As demonstrated in the previous example, the int() function converts a floating-point argu-
ment to an integer by truncating it. As previously mentioned, that means it throws away the
number’s fractional part. Here is an example that uses a negative number:

fvalue = -2.9
ivalue = int(fvalue)

In the second statement, the value �2 is returned from the int() function. After this code
executes, the fvalue variable references the value �2.9, and the ivalue variable references
the value �2.

You can use the float() function to explicitly convert an int to a float, as shown in the
following code:

ivalue = 2
fvalue = float(ivalue)

After this code executes, the ivalue variable references the integer value 2, and the fvalue
variable references the floating-point value 2.0.

Breaking Long Statements into Multiple Lines
Most programming statements are written on one line. If a programming statement is too long,
however, you will not be able to view all of it in your editor window without scrolling hori-
zontally. In addition, if you print your program code on paper and one of the statements is too
long to fit on one line, it will wrap around to the next line and make the code difficult to read.

Python allows you to break a statement into multiple lines by using the line continuation
character, which is a backslash (\). You simply type the backslash character at the point
you want to break the statement, and then press the Enter key. Here is a print function
call that is broken into two lines with the line continuation character:

print('We sold', units_sold, \
'for a total of', sales_amount)

The line continuation character that appears at the end of the first line tells the interpreter
that the statement is continued on the next line. Here is a statement that performs a math-
ematical calculation and has been broken up to fit on two lines:

result = var1 * 2 + var2 * 3 + \
var3 * 4 + var4 * 5

64 Chapter 2 Input, Processing, and Output

Here is one last example:

print("Monday's sales are", monday, \
"and Tuesday's sales are", tuesday, \
"and Wednesday's sales are", wednesday)

This long statement is broken into three lines. Notice that the first two lines end with a
backslash.

Checkpoint

2.19 Complete the following table by writing the value of each expression in the
Value column.

Expression Value

6 + 3 * 5 ______

12 / 2 - 4 ______

9 + 14 * 2 - 6 ______

(6 + 2) * 3 ______

14 / (11 - 4) ______

9 + 12 * (8 - 3) ______

2.20 What value will be assigned to result after the following statement executes?

result = 9 // 2

2.21 What value will be assigned to result after the following statement executes?

result = 9 % 2

2.8 More About Data Output
So far we have discussed only basic ways to display data. Eventually, you will want to exer-
cise more control over the way data appear on the screen. In this section, you will learn
more details about the Python print function, and you’ll see techniques for formatting out-
put in specific ways.

Suppressing the print Function’s Ending Newline
The print function normally displays a line of output. For example, the following three
statements will produce three lines of output:

print('One')
print('Two')
print('Three')

Each of the statements shown here displays a string and then prints a newline character.
You do not see the newline character, but when it is displayed, it causes the output to

2.8 More About Data Output 65

66 Chapter 2 Input, Processing, and Output

advance to the next line. (You can think of the newline character as a special command that
causes the computer to start a new line of output.)

If you do not want the print function to start a new line of output when it finishes dis-
playing its output, you can pass the special argument end=' ' to the function, as shown in
the following code:

print('One', end=' ')
print('Two', end=' ')
print('Three')

Notice that in the first two statements, the argument end=' ' is passed to the print func-
tion. This specifies that the print function should print a space instead of a newline char-
acter at the end of its output. Here is the output of these statements:

One Two Three

Sometimes you might not want the print function to print anything at the end of its out-
put, not even a space. If that is the case, you can pass the argument end='' to the print
function, as shown in the following code:

print('One', end='')
print('Two', end='')
print('Three')

Notice that in the argument end='' there is no space between the quote marks. This
specifies that the print function should print nothing at the end of its output. Here is the
output of these statements:

OneTwoThree

Specifying an Item Separator
When multiple arguments are passed to the print function, they are automatically sepa-
rated by a space when they are displayed on the screen. Here is an example, demonstrated
in interactive mode:

>>> print('One', 'Two', 'Three') e
One Two Three
>>>

if you do not want a space printed between the items, you can pass the argument sep=''
to the print function, as shown here:

>>> print('One', 'Two', 'Three', sep='') e
OneTwoThree
>>>

You can also use this special argument to specify a character other than the space to sepa-
rate multiple items. Here is an example:

>>> print('One', 'Two', 'Three', sep='*') e
One*Two*Three
>>>

Notice that in this example, we passed the argument sep='*' to the print function. This spec-
ifies that the printed items should be separated with the * character. Here is another example:

>>> print('One', 'Two', 'Three', sep='~~~') e
One~~~Two~~~Three
>>>

Escape Characters
An escape character is a special character that is preceded with a backslash (\), appearing
inside a string literal. When a string literal that contains escape characters is printed, the
escape characters are treated as special commands that are embedded in the string.

For example, \n is the newline escape character. When the \n escape character is printed,
it isn’t displayed on the screen. Instead, it causes output to advance to the next line. For
example, look at the following statement:

print('One\nTwo\nThree')

When this statement executes, it displays

One
Two
Three

Python recognizes several escape characters, some of which are listed in Table 2-8.

Table 2-8 Some of Python’s escape characters

Escape Character Effect

\n Causes output to be advanced to the next line.

\t Causes output to skip over to the next horizontal tab position.
\' Causes a single quote mark to be printed.
\" Causes a double quote mark to be printed.
\\ Causes a backslash character to be printed.

The \t escape character advances the output to the next horizontal tab position. (A tab posi-
tion normally appears after every eighth character.) The following statements are illustrative:

print('Mon\tTues\tWed')
print('Thur\tFri\tSat')

This statement prints Monday, then advances the output to the next tab position, then prints
Tuesday, then advances the output to the next tab position, then prints Wednesday. The out-
put will look like this:

Mon Tues Wed
Thur Fri Sat

You can use the \' and \" escape characters to display quotation marks. The following
statements are illustrative:

print("Your assignment is to read \"Hamlet\" by tomorrow.")
print('I\'m ready to begin.')

2.8 More About Data Output 67

68 Chapter 2 Input, Processing, and Output

These statements display the following:

Your assignment is to read "Hamlet" by tomorrow.
I'm ready to begin.

You can use the \\ escape character to display a backslash, as shown in the following:

print('The path is C:\\temp\\data.')

This statement will display

The path is C:\temp\data.

Displaying Multiple Items with the + Operator
Earlier in this chapter, you saw that the + operator is used to add two numbers. When
the + operator is used with two strings, however, it performs string concatenation.
This means that it appends one string to another. For example, look at the following
statement:

print('This is ' + 'one string.')

This statement will print

This is one string.

String concatenation can be useful for breaking up a string literal so a lengthy call to the
print function can span multiple lines. Here is an example:

print('Enter the amount of ' + \
'sales for each day and ' + \
'press Enter.')

This statement will display the following:

Enter the amount of sales for each day and press Enter.

Formatting Numbers
You might not always be happy with the way that numbers, especially floating-point num-
bers, are displayed on the screen. When a floating-point number is displayed by the print
statement, it can appear with up to 12 significant digits. This is shown in the output of
Program 2-19.

Program 2-19 (no_formatting.py)

1 # This program demonstrates how a floating-point
2 # number is displayed with no formatting.
3 amount_due = 5000.0
4 monthly_payment = amount_due / 12.0
5 print('The monthly payment is', monthly_payment)

Program Output

The monthly payment is 416.666666667

Because this program displays a dollar amount, it would be nice to see that amount rounded
to two decimal places. Fortunately, Python gives us a way to do just that, and more, with the
built-in format function.

When you call the built-in format function, you pass two arguments to the function: a
numeric value, and a format specifier. The format specifier is a string that contains special
characters specifying how the numeric value should be formatted. Let’s look at an example:

format(12345.6789, '.2f')

The first argument, which is the floating-point number 12345.6789, is the number that we
want to format. The second argument, which is the string '.2f', is the format specifier.
Here is the meaning of its contents:

• The .2 specifies the precision. It indicates that we want to round the number to two
decimal places.

• The f specifies that the data type of the number we are formatting is a floating-point
number. (If you are formatting an integer, you cannot use f for the type. We discuss
integer formatting momentarily.)

The format function returns a string containing the formatted number. The following inter-
active mode session demonstrates how you use the format function along with the print
function to display a formatted number:

>>> print(format(12345.6789, '.2f')) e
12345.68
>>>

Notice that the number is rounded to two decimal places. The following example shows the
same number, rounded to one decimal place:

>>> print(format(12345.6789, '.1f')) e
12345.7
>>>

Here is another example:

>>> print('The number is', format(1.234567, '.2f')) e
The number is 1.23
>>>

Program 2-20 shows how we can modify Program 2-19 so that it formats its output using
this technique.

Program 2-20 (formatting.py)

1 # This program demonstrates how a floating-point
2 # number can be formatted.
3 amount_due = 5000.0
4 monthly_payment = amount_due / 12
5 print('The monthly payment is', \
6 format(monthly_payment, '.2f'))

Program Output

The monthly payment is 416.67

2.8 More About Data Output 69

70 Chapter 2 Input, Processing, and Output

Formatting in Scientific Notation
If you prefer to display floating-point numbers in scientific notation, you can use the letter
e or the letter E instead of f. Here are some examples:

>>> print(format(12345.6789, 'e')) e
1.234568e+04
>>> print(format(12345.6789, '.2e')) e

1.23e+04
>>>

The first statement simply formats the number in scientific notation. The number is dis-
played with the letter e indicating the exponent. (If you use uppercase E in the format spec-
ifier, the result will contain an uppercase E indicating the exponent.) The second statement
additionally specifies a precision of two decimal places.

Inserting Comma Separators
If you want the number to be formatted with comma separators, you can insert a comma
into the format specifier, as shown here:

>>> print(format(12345.6789, ',.2f')) e
12,345.68
>>>

Here is an example that formats an even larger number:

>>> print(format(123456789.456, ',.2f')) e
123,456,789.46
>>>

Notice that in the format specifier the comma is written before (to the left of) the precision des-
ignator. Here is an example that specifies the comma separator but does not specify precision:

>>> print(format(12345.6789, ',f')) e
12,345.678900
>>>

Program 2-21 demonstrates how the comma separator and a precision of two decimal
places can be used to format larger numbers as currency amounts.

Program 2-21 (dollar_display.py)

1 # This program demonstrates how a floating-point
2 # number can be displayed as currency.
3 monthly_pay = 5000.0
4 annual_pay = monthly_pay * 12
5 print('Your annual pay is $', \
6 format(annual_pay, ',.2f'), \
7 sep='')

Program Output

Your annual pay is $60,000.00

2.8 More About Data Output 71

Notice that in line 7 we passed the argument sep='' to the print function. As we men-
tioned earlier, this specifies that no space should be printed between the items that are being
displayed. If we did not pass this argument, a space would be printed after the $ sign.

Specifying a Minimum Field Width
The format specifier can also include a minimum field width, which is the minimum num-
ber of spaces that should be used to display the value. The following example prints a num-
ber in a field that is 12 spaces wide:

>>> print('The number is', format(12345.6789, '12,.2f')) e
The number is 12,345.68
>>>

In this example, the 12 that appears in the format specifier indicates that the number should
be displayed in a field that is a minimum of 12 spaces wide. In this case, the number that
is displayed is shorter than the field that it is displayed in. The number 12,345.68 uses only
9 spaces on the screen, but it is displayed in a field that is 12 spaces wide. When this is the
case, the number is right justified in the field. If a value is too large to fit in the specified
field width, the field is automatically enlarged to accommodate it.

Note that in the previous example, the field width designator is written before (to the left
of) the comma separator. Here is an example that specifies field width and precision, but
does not use comma separators:

>>> print('The number is', format(12345.6789, '12.2f')) e
The number is 12345.68
>>>

Field widths can help when you need to print numbers aligned in columns. For exam-
ple, look at Program 2-22. Each of the variables is displayed in a field that is seven
spaces wide.

Program 2-22 (columns.py)

1 # This program displays the following
2 # floating-point numbers in a column
3 # with their decimal points aligned.
4 num1 = 127.899
5 num2 = 3465.148
6 num3 = 3.776
7 num4 = 264.821
8 num5 = 88.081
9 num6 = 799.999

10
11 # Display each number in a field of 7 spaces
12 # with 2 decimal places.
13 print(format(num1, '7.2f'))
14 print(format(num2, '7.2f'))

(program continues)

72 Chapter 2 Input, Processing, and Output

Program 2-22 (continued)

15 print(format(num3, '7.2f'))
16 print(format(num4, '7.2f'))
17 print(format(num5, '7.2f'))
18 print(format(num6, '7.2f'))

Program Output

127.90
3465.15

3.78
264.82
88.08
800.00

Formatting a Floating-Point Number as a Percentage
Instead of using f as the type designator, you can use the % symbol to format a floating-
point number as a percentage. The % symbol causes the number to be multiplied by 100 and
displayed with a % sign following it. Here is an example:

>>> print(format(0.5, '%')) e
50.000000%
>>>

Here is an example that specifies 0 as the precision:

>>> print(format(0.5, '.0%')) e
50%
>>>

Formatting Integers
All the previous examples demonstrated how to format floating-point numbers. You can
also use the format function to format integers. There are two differences to keep in mind
when writing a format specifier that will be used to format an integer:

• You use d as the type designator.
• You cannot specify precision.

Let’s look at some examples in the interactive interpreter. In the following session, the num-
ber 123456 is printed with no special formatting:

>>> print(format(123456, 'd')) e
123456
>>>

In the following session, the number 123456 is printed with a comma separator:

>>> print(format(123456, ',d')) e
123,456
>>>

In the following session, the number 123456 is printed in a field that is 10 spaces wide:

>>> print(format(123456, '10d')) e
123456

>>>

In the following session, the number 123456 is printed with a comma separator in a field
that is 10 spaces wide:

>>> print(format(123456, '10,d')) e
123,456

>>>

Review Questions
Multiple Choice

1. A __________ error does not prevent the program from running, but causes it to
produce incorrect results.
a. syntax
b. hardware
c. logic
d. fatal

2. A __________ is a single function that the program must perform in order to satisfy the
customer.
a. task
b. software requirement
c. prerequisite
d. predicate

3. A(n) __________ is a set of well-defined logical steps that must be taken to perform a
task.
a. logarithm
b. plan of action
c. logic schedule
d. algorithm

4. An informal language that has no syntax rules, and is not meant to be compiled or
executed is called __________.
a. faux code
b. pseudocode
c. Python
d. a flowchart

5. A __________ is a diagram that graphically depicts the steps that take place in a
program.
a. flowchart
b. step chart
c. code graph
d. program graph

Review Questions 73

6. A __________ is a sequence of characters.
a. char sequence
b. character collection
c. string
d. text block

7. A __________ is a name that references a value in the computer’s memory.
a. variable
b. register
c. RAM slot
d. byte

8. A __________ is any hypothetical person using a program and providing input for it.
a. designer
b. user
c. guinea pig
d. test subject

9. A string literal in Python must be enclosed in
a. parentheses
b. single-quotes
c. double-quotes
d. either single-quotes or double-quotes

10. Short notes placed in different parts of a program explaining how those parts of the
program work are called __________.
a. comments
b. reference manuals
c. tutorials
d. external documentation

11. A(n) __________ makes a variable reference a value in the computer’s memory.
a. variable declaration
b. assignment statement
c. math expression
d. string literal

12. This symbol marks the beginning of a comment in Python.
a. &
b. *
c. **
d. #

13. Which of the following statements will cause an error?
a. x = 17
b. 17 = x
c. x = 99999
d. x = '17'

74 Chapter 2 Input, Processing, and Output

14. In the expression 12 + 7, the values on the right and left of the + symbol are
called __________.
a. operands
b. operators
c. arguments
d. math expressions

15. This operator performs integer division.
a. //
b. %
c. **
d. /

16. This is an operator that raises a number to a power.
a. %
b. *
c. **
d. /

17. This operator performs division, but instead of returning the quotient it returns the
remainder.
a. %
b. *
c. **
d. /

18. Suppose the following statement is in a program: price = 99.0. After this statement
executes, the price variable will reference a value of this data type.
a. int
b. float
c. currency
d. str

19. This built-in function can be used to read input that has been typed on the key-
board.
a. input()
b. get_input()
c. read_input()
d. keyboard()

20. This built-in function can be used to convert an int value to a float.
a. int_to_float()
b. float()
c. convert()
d. int()

True or False

1. Programmers must be careful not to make syntax errors when writing pseudocode
programs.

2. In a math expression, multiplication and division takes place before addition and
subtraction.

Review Questions 75

3. Variable names can have spaces in them.

4. In Python the first character of a variable name cannot be a number.

5. If you print a variable that has not been assigned a value, the number 0 will be
displayed.

Short Answer

1. What does a professional programmer usually do first to gain an understanding of a
problem?

2. What is pseudocode?

3. Computer programs typically perform what three steps?

4. If a math expression adds a float to an int, what will the data type of the result be?

5. What is the difference between floating-point division and integer division?

Algorithm Workbench

1. Write Python code that prompts the user to enter his or her height and assigns the user’s
input to a variable named height.

2. Write Python code that prompts the user to enter his or her favorite color and assigns
the user’s input to a variable named color.

3. Write assignment statements that perform the following operations with the
variables a, b, and c.
a. Adds 2 to a and assigns the result to b
b. Multiplies b times 4 and assigns the result to a
c. Divides a by 3.14 and assigns the result to b
d. Subtracts 8 from b and assigns the result to a

4. Assume the variables result, w, x, y, and z are all integers, and that w = 5, x = 4,
y = 8, and z = 2. What value will be stored in result after each of the
following statements execute?
a. result = x + y
b. result = z * 2
c. result = y / x
d. result = y – z
e. result = w // z

5. Write a Python statement that assigns the sum of 10 and 14 to the variable total.

6. Write a Python statement that subtracts the variable down_payment from the variable
total and assigns the result to the variable due.

7. Write a Python statement that multiplies the variable subtotal by 0.15 and assigns the
result to the variable total.

8. What would the following display?
a = 5
b = 2
c = 3
result = a + b * c
print(result)

76 Chapter 2 Input, Processing, and Output

9. What would the following display?
num = 99
num = 5
print(num)

10. Assume the variable sales references a float value. Write a statement that displays
the value rounded to two decimal points.

11. Assume the following statement has been executed:
number = 1234567.456

Write a Python statement that displays the value referenced by the number variable for-
matted as

1,234,567.5

12. What will the following statement display?
print('George', 'John', 'Paul', 'Ringo', sep='@')

Programming Exercises
1. Personal Information

Write a program that displays the following information:

• Your name
• Your address, with city, state, and ZIP
• Your telephone number
• Your college major

2. Sales Prediction

A company has determined that its annual profit is typically 23 percent of total sales. Write
a program that asks the user to enter the projected amount of total sales, and then displays
the profit that will be made from that amount.

Hint: use the value 0.23 to represent 23 percent.

3. Land Calculation

One acre of land is equivalent to 43,560 square feet. Write a program that asks the user to
enter the total square feet in a tract of land and calculates the number of acres in the tract.

Hint: divide the amount entered by 43,560 to get the number of acres.

4. Total Purchase

A customer in a store is purchasing five items. Write a program that asks for the price of
each item, and then displays the subtotal of the sale, the amount of sales tax, and the total.
Assume the sales tax is 6 percent.

5. Distance Traveled

Assuming there are no accidents or delays, the distance that a car travels down the inter-
state can be calculated with the following formula:

Distance � Speed � Time

Programming Exercises 77

VideoNote
The Sales Prediction
Problem

A car is traveling at 60 miles per hour. Write a program that displays the following:

• The distance the car will travel in 5 hours
• The distance the car will travel in 8 hours
• The distance the car will travel in 12 hours

6. Sales Tax

Write a program that will ask the user to enter the amount of a purchase. The program
should then compute the state and county sales tax. Assume the state sales tax is 4 percent
and the county sales tax is 2 percent. The program should display the amount of the pur-
chase, the state sales tax, the county sales tax, the total sales tax, and the total of the sale
(which is the sum of the amount of purchase plus the total sales tax).

Hint: use the value 0.02 to represent 2 percent, and 0.04 to represent 4 percent.

7. Miles-per-Gallon

A car’s miles-per-gallon (MPG) can be calculated with the following formula:

Write a program that asks the user for the number of miles driven and the gallons of gas
used. It should calculate the car’s MPG and display the result.

8. Tip, Tax, and Total

Write a program that calculates the total amount of a meal purchased at a restaurant. The
program should ask the user to enter the charge for the food, and then calculate the amount
of a 15 percent tip and 7 percent sales tax. Display each of these amounts and the total.

9. Celsius to Fahrenheit Temperature Converter

Write a program that converts Celsius temperatures to Fahrenheit temperatures. The for-
mula is as follows:

The program should ask the user to enter a temperature in Celsius, and then display the
temperature converted to Fahrenheit.

10. Stock Transaction Program

Last month Joe purchased some stock in Acme Software, Inc. Here are the details of the
purchase:

• The number of shares that Joe purchased was 1,000.
• When Joe purchased the stock, he paid $32.87 per share.
• Joe paid his stockbroker a commission that amounted to 2 percent of the amount he paid

for the stock.

Two weeks later Joe sold the stock. Here are the details of the sale:

• The number of shares that Joe sold was 1,000.
• He sold the stock for $33.92 per share.
• He paid his stockbroker another commission that amounted to 2 percent of the amount

he received for the stock.

F =
9
5

 C + 32

MPG = Miles driven / Gallons of gas used

78 Chapter 2 Input, Processing, and Output

Write a program that displays the following information:

• The amount of money Joe paid for the stock.
• The amount of commission Joe paid his broker when he bought the stock.
• The amount that Joe sold the stock for.
• The amount of commission Joe paid his broker when he sold the stock.
• Display the amount of money that Joe had left when he sold the stock and paid his

broker (both times). If this amount is positive, then Joe made a profit. If the amount is
negative, then Joe lost money.

Programming Exercises 79

This page intentionally left blank

3.1 Introduction to Functions

CONCEPT: A function is a group of statements that exist within a program for the
purpose of performing a specific task.

In Chapter 2 we described a simple algorithm for calculating an employee’s pay. In the algo-
rithm, the number of hours worked is multiplied by an hourly pay rate. A more realistic
payroll algorithm, however, would do much more than this. In a real-world application, the
overall task of calculating an employee’s pay would consist of several subtasks, such as the
following:

• Getting the employee’s hourly pay rate
• Getting the number of hours worked
• Calculating the employee’s gross pay
• Calculating overtime pay
• Calculating withholdings for taxes and benefits
• Calculating the net pay
• Printing the paycheck

Most programs perform tasks that are large enough to be broken down into several
subtasks. For this reason, programmers usually break down their programs into small man-
ageable pieces known as functions. A function is a group of statements that exist within a
program for the purpose of performing a specific task. Instead of writing a large program
as one long sequence of statements, it can be written as several small functions, each one
performing a specific part of the task. These small functions can then be executed in the
desired order to perform the overall task.

Simple Functions3
TOPICS

3.1 Introduction to Functions
3.2 Defining and Calling a Function
3.3 Designing a Program to Use Functions

3.4 Local Variables
3.5 Passing Arguments to Functions
3.6 Global Variables and Global Constants

C
H

A
P

T
E

R

81

This approach is sometimes called divide and conquer because a large task is divided into
several smaller tasks that are easily performed. Figure 3-1 illustrates this idea by compar-
ing two programs: one that uses a long complex sequence of statements to perform a task,
and another that divides a task into smaller tasks, each of which is performed by a sepa-
rate function.

When using functions in a program, you generally isolate each task within the program in
its own function. For example, a realistic pay calculating program might have the follow-
ing functions:

• A function that gets the employee’s hourly pay rate
• A function that gets the number of hours worked
• A function that calculates the employee’s gross pay
• A function that calculates the overtime pay
• A function that calculates the withholdings for taxes and benefits
• A function that calculates the net pay
• A function that prints the paycheck

A program that has been written with each task in its own function is called a modularized
program.

82 Chapter 3 Simple Functions

statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement
statement

This program is one long, complex
sequence of statements.

In this program the task has been
divided into smaller tasks, each of which

is performed by a separate function.

def function1():
 statement
 statement
 statement

function

def function2():
 statement
 statement
 statement

function

def function3():
 statement
 statement
 statement

function

def function4():
 statement
 statement
 statement

function

Figure 3-1 Using functions to divide and conquer a large task

Benefits of Modularizing a Program with Functions
A program benefits in the following ways when it is broken down into functions:

Simpler Code

A program’s code tends to be simpler and easier to understand when it is broken down into
functions. Several small functions are much easier to read than one long sequence of statements.

Code Reuse

Functions also reduce the duplication of code within a program. If a specific operation is
performed in several places in a program, a function can be written once to perform that
operation, and then be executed any time it is needed. This benefit of using functions is
known as code reuse because you are writing the code to perform a task once and then
reusing it each time you need to perform the task.

Better Testing

When each task within a program is contained in its own function, testing and debugging
becomes simpler. Programmers can test each function in a program individually, to deter-
mine whether it correctly performs its operation. This makes it easier to isolate and fix
errors.

Faster Development

Suppose a programmer or a team of programmers is developing multiple programs. They
discover that each of the programs perform several common tasks, such as asking for a
username and a password, displaying the current time, and so on. It doesn’t make sense
to write the code for these tasks multiple times. Instead, functions can be written for the
commonly needed tasks, and those functions can be incorporated into each program that
needs them.

Easier Facilitation of Teamwork

Functions also make it easier for programmers to work in teams. When a program is devel-
oped as a set of functions that each performs an individual task, then different program-
mers can be assigned the job of writing different functions.

Checkpoint

3.1 What is a function?

3.2 What is meant by the phrase “divide and conquer?”

3.3 How do functions help you reuse code in a program?

3.4 How can functions make the development of multiple programs faster?

3.5 How can functions make it easier for programs to be developed by teams of
programmers?

3.2 Defining and Calling a Function

CONCEPT: The code for a function is known as a function definition. To execute the
function, you write a statement that calls it.

3.2 Defining and Calling a Function 83

Function Names
Before we discuss the process of creating and using functions, we should mention a few
things about function names. Just as you name the variables that you use in a program, you
also name the functions. A function’s name should be descriptive enough so that anyone
reading your code can reasonably guess what the function does.

Python requires that you follow the same rules that you follow when naming variables,
which we recap here:

• You cannot use one of Python’s key words as a function name. (See Table 1-2 for a
list of the key words.)

• A function name cannot contain spaces.
• The first character must be one of the letters a through z, A through Z, or an under-

score character (_).
• After the first character you may use the letters a through z or A through Z, the dig-

its 0 through 9, or underscores.
• Uppercase and lowercase characters are distinct.

Because functions perform actions, most programmers prefer to use verbs in function
names. For example, a function that calculates gross pay might be named calculate_
gross_pay. This name would make it evident to anyone reading the code that the
function calculates something. What does it calculate? The gross pay, of course. Other
examples of good function names would be get_hours, get_pay_rate, calculate_
overtime, print_check, and so on. Each function name describes what the function
does.

Defining and Calling a Function
To create a function you write its definition. Here is the general format of a function defi-
nition in Python:

def function_name():
statement
statement
etc.

The first line is known as the function header. It marks the beginning of the function defi-
nition. The function header begins with the key word def, followed by the name of the
function, followed by a set of parentheses, followed by a colon.

Beginning at the next line is a set of statements known as a block. A block is simply a set
of statements that belong together as a group. These statements are performed any time the
function is executed. Notice in the general format that all of the statements in the block are
indented. This indentation is required because the Python interpreter uses it to tell where
the block begins and ends.

Let’s look at an example of a function. Keep in mind that this is not a complete program.
We will show the entire program in a moment.

84 Chapter 3 Simple Functions

VideoNote
Defining and
Calling a function

def message():
print('I am Arthur,')
print('King of the Britons.')

This code defines a function named message. The message function contains a block
with two statements. Executing the function will cause these statements to execute.

Calling a Function

A function definition specifies what a function does, but it does not cause the function to
execute. To execute a function, you must call it. This is how we would call the message
function:

message()

When a function is called, the interpreter jumps to that function and executes the state-
ments in its block. Then, when the end of the block is reached, the interpreter jumps back
to the part of the program that called the function, and the program resumes execution at
that point. When this happens, we say that the function returns. To fully demonstrate how
function calling works, we will look at Program 3-1.

Program 3-1 (function_demo.py)

1 # This program demonstrates a function.
2 # First, we define a function named message.
3 def message():
4 print('I am Arthur,')
5 print('King of the Britons.')
6
7 # Call the message function.
8 message()

Program Output

I am Arthur,
King of the Britons.

Let’s step through this program and examine what happens when it runs. First, the inter-
preter ignores the comments that appear in lines 1 and 2. Then, it reads the def statement
in line 3. This causes a function named message to be created in memory, containing the
block of statements in lines 4 and 5. (Remember, a function definition creates a function,
but it does not cause the function to execute.) Next, the interpreter encounters the comment
in line 7, which is ignored. Then it executes the statement in line 8, which is a function call.
This causes the message function to execute, which prints the two lines of output.
Figure 3-2 illustrates the parts of this program.

3.2 Defining and Calling a Function 85

Program 3-1 has only one function, but it is possible to define many functions in a program. In
fact, it is common for a program to have a main function that is called when the program starts.
The main function then calls other functions in the program as they are needed. It is often said
that the main function contains a program’s mainline logic, which is the overall logic of the pro-
gram. Program 3-2 shows an example of a program with two functions: main and message.

Program 3-2 (two_functions.py)

1 # This program has two functions. First we
2 # define the main function.
3 def main():
4 print('I have a message for you.')
5 message()
6 print('Goodbye!')
7
8 # Next we define the message function.
9 def message():

10 print('I am Arthur,')
11 print('King of the Britons.')
12
13 # Call the main function.
14 main()

Program Output

I have a message for you.
I am Arthur,
King of the Britons.
Goodbye!

The definition of the main function appears in lines 3 through 6, and the definition of the
message function appears in lines 9 through 11. The statement in line 14 calls the main
function, as shown in Figure 3-3.

86 Chapter 3 Simple Functions

This program demonstrates a function.
First, we define a function named message.
def message():
 print('I am Arthur,')
 print('King of the Britons.')

Call the message function.
message()

These statements cause
the message function to

be created.

This statement calls
the message function,
causing it to execute.

Figure 3-2 The function definition and the function call

3.2 Defining and Calling a Function 87

The first statement in the main function calls the print function in line 4. It displays the
string 'I have a message for you'. Then, the statement in line 5 calls the message
function. This causes the interpreter to jump to the message function, as shown in Figure
3-4. After the statements in the message function have executed, the interpreter returns to
the main function and resumes with the statement that immediately follows the function
call. As shown in Figure 3-5, this is the statement that displays the string 'Goodbye!'.

This program has two functions. First we

define the main function.

def main():

 print('I have a message for you.')

 message()

 print('Goodbye!')

Next we define the message function.

def message():

 print('I am Arthur,')

 print('King of the Britons.')

Call the main function.

main()

The interpreter jumps to
the main function and
begins executing the

statements in its block.

This program has two functions. First we

define the main function.

def main():

 print('I have a message for you.')

 message()

 print('Goodbye!')

Next we define the message function.

def message():

 print('I am Arthur,')

 print('King of the Britons.')

Call the main function.

main()

The interpreter jumps to
the message function and

begins executing the
statements in its block.

Figure 3-3 Calling the main function

Figure 3-4 Calling the message function

This program has two functions. First we

define the main function.

def main():

 print('I have a message for you.')

 message()

 print('Goodbye!')

Next we define the message function.

def message():

 print('I am Arthur,')

 print('King of the Britons.')

Call the main function.

main()

When the message
function ends, the

interpreter jumps back to
the part of the program that

called it, and resumes
execution from that point.

Figure 3-5 The message function returns

That is the end of the main function, so the function returns as shown in Figure 3-6. There
are no more statements to execute, so the program ends.

88 Chapter 3 Simple Functions

NOTE: When a program calls a function, programmers commonly say that the
control of the program transfers to that function. This simply means that the function
takes control of the program’s execution.

Indentation in Python
In Python, each line in a block must be indented. As shown in Figure 3-7, the last indented
line after a function header is the last line in the function’s block.

Figure 3-6 The main function returns

This program has two functions. First we

define the main function.

def main():

 print('I have a message for you.')

 message()

 print('Goodbye!')

Next we define the message function.

def message():

 print('I am Arthur,')

 print('King of the Britons.')

Call the main function.

main()

When the main function
ends, the interpreter jumps

back to the part of the
program that called it. There
are no more statements, so

the program ends.

Figure 3-7 All of the statements in a block are indented

def greeting():

 print('Good morning!')

 print('Today we will learn about functions.')

print('I will call the greeting function.')

greeting()

The last indented line is
the last line in the block.

These statements
are not in the block.

When you indent the lines in a block, make sure each line begins with the same number of
spaces. Otherwise an error will occur. For example, the following function definition will
cause an error because the lines are all indented with different numbers of spaces.

def my_function():
print('And now for')

print('something completely')
print('different.')

In an editor there are two ways to indent a line: (1) by pressing the Tab key at the begin-
ning of the line, or (2) by using the spacebar to insert spaces at the beginning of the line.
You can use either tabs or spaces when indenting the lines in a block, but don’t use both.
Doing so may confuse the Python interpreter and cause an error.

IDLE, as well as most other Python editors, automatically indents the lines in a block.
When you type the colon at the end of a function header, all of the lines typed afterward
will automatically be indented. After you have typed the last line of the block you press the
Backspace key to get out of the automatic indentation.

3.3 Designing a Program to Use Functions 89

Figure 3-8 Function call symbol

message()

TIP: Python programmers customarily use four spaces to indent the lines in a
block. You can use any number of spaces you wish, as long as all the lines in the
block are indented by the same amount.

NOTE: Blank lines that appear in a block are ignored.

3.3 Designing a Program to Use Functions

CONCEPT: Programmers commonly use a technique known as top-down design to
break down an algorithm into functions.

Flowcharting a Program with Functions
In Chapter 2 we introduced flowcharts as a tool for designing programs. In a flowchart, a
function call is shown with a rectangle that has vertical bars at each side, as shown in Fig-
ure 3-8. The name of the function that is being called is written on the symbol. The example
shown in Figure 3-8 shows how we would represent a call to the message function.

Checkpoint

3.6 A function definition has what two parts?

3.7 What does the phrase “calling a function” mean?

3.8 When a function is executing, what happens when the end of the function’s block
is reached?

3.9 Why must you indent the statements in a block?

Programmers typically draw a separate flowchart for each function in a program. For exam-
ple, Figure 3-9 shows how the main function and the message function in Program 3-2
would be flowcharted. When drawing a flowchart for a function, the starting terminal sym-
bol usually shows the name of the function and the ending terminal symbol usually reads
Return.

90 Chapter 3 Simple Functions

Return

main()

Display 'I have a
message for you.'

Display 'Goodbye!'

message()

Display 'I am Arthur'

Return

message()
Display 'King of the

Britons'

Figure 3-9 Flowchart for Program 3-2

Top-Down Design
In this section, we have discussed and demonstrated how functions work. You’ve seen how
control of a program is transferred to a function when it is called, and then returns to the
part of the program that called the function when the function ends. It is important that
you understand these mechanical aspects of functions.

Just as important as understanding how functions work is understanding how to design a
program that uses functions. Programmers commonly use a technique known as top-down
design to break down an algorithm into functions. The process of top-down design is per-
formed in the following manner:

• The overall task that the program is to perform is broken down into a series of
subtasks.

• Each of the subtasks is examined to determine whether it can be further broken
down into more subtasks. This step is repeated until no more subtasks can be
identified.

• Once all of the subtasks have been identified, they are written in code.

This process is called top-down design because the programmer begins by looking at the
topmost level of tasks that must be performed, and then breaks down those tasks into lower
levels of subtasks.

Hierarchy Charts
Flowcharts are good tools for graphically depicting the flow of logic inside a function, but
they do not give a visual representation of the relationships between functions. Programmers
commonly use hierarchy charts for this purpose. A hierarchy chart, which is also known as
a structure chart, shows boxes that represent each function in a program. The boxes are
connected in a way that illustrates the functions called by each function. Figure 3-10 shows
an example of a hierarchy chart for a hypothetical pay calculating program.

In the Spotlight:
Defining and Calling Functions
Professional Appliance Service, Inc. offers maintenance and repair services for household
appliances. The owner wants to give each of the company’s service technicians a small
handheld computer that displays step-by-step instructions for many of the repairs that

main()

calc_gross_pay()

get_hours_worked() get_hourly_rate()

get_input() calc_overtime()

calc_taxes() calc_benefits()

calc_withholdings() calc_net_pay()

Figure 3-10 A hierarchy chart

The chart shown in Figure 3-9 shows the main function as the topmost function in the hierar-
chy. The main function calls five other functions: get_input, calc_gross_pay, calc_over-
time, calc_withholdings, and calc_net_pay. The get_input function calls two addi-
tional functions: get_hours_worked and get_hourly_rate. The calc_withholdings
function also calls two functions: calc_taxes and calc_benefits.

Notice that the hierarchy chart does not show the steps that are taken inside a function.
Because they do not reveal any details about how functions work, they do not replace flow-
charts or pseudocode.

3.3 Designing a Program to Use Functions 91

92 Chapter 3 Simple Functions

they perform. To see how this might work, the owner has asked you to develop a program
that displays the following instructions for disassembling an Acme laundry dryer:

Step 1: Unplug the dryer and move it away from the wall.
Step 2: Remove the six screws from the back of the dryer.
Step 3: Remove the dryer’s back panel.
Step 4: Pull the top of the dryer straight up.

During your interview with the owner, you determine that the program should display the
steps one at a time. You decide that after each step is displayed, the user will be asked to
press the Enter key to see the next step. Here is the algorithm in pseudocode:

Display a starting message, explaining what the program does.
Ask the user to press Enter to see step 1.
Display the instructions for step 1.
Ask the user to press Enter to see the next step.
Display the instructions for step 2.
Ask the user to press Enter to see the next step.
Display the instructions for step 3.
Ask the user to press Enter to see the next step.
Display the instructions for step 4.

This algorithm lists the top level of tasks that the program needs to perform, and becomes
the basis of the program’s main function. Figure 3-11 shows the program’s structure in a
hierarchy chart.

Figure 3-11 Hierarchy chart for the program

main()

startup_message() step1() step3()step2() step4()

As you can see from the hierarchy chart, the main function will call several other functions.
Here are summaries of those functions:

• startup_message—This function will display the starting message that tells the tech-
nician what the program does.

• step1—This function will display the instructions for step 1.
• step2—This function will display the instructions for step 2.
• step3—This function will display the instructions for step 3.
• step4—This function will display the instructions for step 4.

Between calls to these functions, the main function will instruct the user to press a key to
see the next step in the instructions. Program 3-3 shows the code for the program.

3.3 Designing a Program to Use Functions 93

Program 3-3 (acme_dryer.py)

1 # This program displays step-by-step instructions
2 # for disassembling an Acme dryer.
3 # The main function performs the program's main logic.
4 def main():
5 # Display the start-up message.
6 startup_message()
7 input('Press Enter to see Step 1.')
8 # Display step 1.
9 step1()

10 input('Press Enter to see Step 2.')
11 # Display step 2.
12 step2()
13 input('Press Enter to see Step 3.')
14 # Display step 3.
15 step3()
16 input('Press Enter to see Step 4.')
17 # Display step 4.
18 step4()
19
20 # The startup_message function displays the
21 # program's initial message on the screen.
22 def startup_message():
23 print('This program tells you how to')
24 print('disassemble an ACME laundry dryer.')
25 print('There are 4 steps in the process.')
26 print()
27
28 # The step1 function displays the instructions
29 # for step 1.
30 def step1():
31 print('Step 1: Unplug the dryer and')
32 print('move it away from the wall.')
33 print()
34
35 # The step2 function displays the instructions
36 # for step 2.
37 def step2():
38 print('Step 2: Remove the six screws')
39 print('from the back of the dryer.')
40 print()
41
42 # The step3 function displays the instructions
43 # for step 3.
44 def step3():
45 print('Step 3: Remove the back panel')

(program continues)

94 Chapter 3 Simple Functions

Program 3-3 (continued)

46 print('from the dryer.')
47 print()
48
49 # The step4 function displays the instructions
50 # for step 4.
51 def step4():
52 print('Step 4: Pull the top of the')
53 print('dryer straight up.')
54
55 # Call the main function to begin the program.
56 main()

Program Output

This program tells you how to
disassemble an ACME laundry dryer.
There are 4 steps in the process.

Press Enter to see Step 1. e

Step 1: Unplug the dryer and
move it away from the wall.

Press Enter to see Step 2. e

Step 2: Remove the six screws
from the back of the dryer.

Press Enter to see Step 3. e

Step 3: Remove the back panel
from the dryer.

Press Enter to see Step 4. e

Step 4: Pull the top of the
dryer straight up.

Pausing Execution Until the User Presses Enter
Sometimes you want a program to pause so the user can read information that has been
displayed on the screen. When the user is ready for the program to continue execution, he
or she presses the Enter key and the program resumes. In Python you can use the input func-
tion to cause a program to pause until the user presses the Enter key. Line 7 in Program
3-3 is an example:

input('Press Enter to see Step 1.')

This statement displays the prompt 'Press Enter to see Step 1.' and pauses until
the user presses the Enter key. The program also uses this technique in lines 10, 13,
and 16.

3.4 Local Variables

CONCEPT: A local variable is created inside a function and cannot be accessed by
statements that are outside the function. Different functions can have
local variables with the same names because the functions cannot see
each other’s local variables.

Anytime you assign a value to a variable inside a function, you create a local variable. A
local variable belongs to the function in which it is created, and only statements inside that
function can access the variable. (The term local is meant to indicate that the variable can
be used only locally, within the function in which it is created.)

An error will occur if a statement in one function tries to access a local variable that belongs
to another function. For example, look at Program 3-4.

Program 3-4 (bad_local.py)

1 # Definition of the main function.
2 def main():
3 get_name()
4 print('Hello', name) # This causes an error!
5
6 # Definition of the get_name function.
7 def get_name():
8 name = input('Enter your name: ')
9

10 # Call the main function.
11 main()

This program has two functions: main and get_name. In line 8 the name variable is
assigned a value that is entered by the user. This statement is inside the get_name function,
so the name variable is local to that function. This means that the name variable cannot be
accessed by statements outside the get_name function.

The main function calls the get_name function in line 3. Then, the statement in line 4
tries to access the name variable. This results in an error because the name variable is local
to the get_name function, and statements in the main function cannot access it.

Scope and Local Variables
A variable’s scope is the part of a program in which the variable may be accessed. A
variable is visible only to statements in the variable’s scope. A local variable’s scope is the
function in which the variable is created. As you saw demonstrated in Program 3-4, no
statement outside the function may access the variable.

3.4 Local Variables 95

In addition, a local variable cannot be accessed by code that appears inside the function at
a point before the variable has been created. For example, look at the following function.
It will cause an error because the print function tries to access the val variable, but this
statement appears before the val variable has been created. Moving the assignment state-
ment to a line before the print statement will fix this error.

def bad_function():
print('The value is', val) # This will cause an error!
val = 99

Because a function’s local variables are hidden from other functions, the other func-
tions may have their own local variables with the same name. For example, look at
Program 3-5. In addition to the main function, this program has two other functions:
texas and california. These two functions each have a local variable named birds.

96 Chapter 3 Simple Functions

Program 3-5 (birds.py)

1 # This program demonstrates two functions that
2 # have local variables with the same name.
3
4 def main():
5 # Call the texas function.
6 texas()
7 # Call the california function.
8 california()
9

10 # Definition of the texas function. It creates
11 # a local variable named birds.
12 def texas():
13 birds = 5000
14 print('texas has', birds, 'birds.')
15
16 # Definition of the california function. It also
17 # creates a local variable named birds.
18 def california():
19 birds = 8000
20 print('california has', birds, 'birds.')
21
22 # Call the main function.
23 main()

Program Output

texas has 5000 birds.
california has 8000 birds.

Although there are two separate variables named birds in this program, only one of
them is visible at a time because they are in different functions. This is illustrated in
Figure 3-12. When the texas function is executing, the birds variable that is created in
line 13 is visible. When the california function is executing, the birds variable that is
created in line 19 is visible.

3.5 Passing Arguments to Functions 97

def texas():
 birds = 5000
 print('texas has', birds, 'birds.')

5000birds

def california():
 birds = 8000
 print('california has', birds, 'birds.')

8000birds

Figure 3-12 Each function has its own birds variable

Checkpoint

3.10 What is a local variable? How is access to a local variable restricted?

3.11 What is a variable’s scope?

3.12 Is it permissible for a local variable in one function to have the same name as a
local variable in a different function?

3.5 Passing Arguments to Functions

CONCEPT: An argument is any piece of data that is passed into a function when the
function is called. A parameter is a variable that receives an argument
that is passed into a function.

Sometimes it is useful not only to call a function, but also to send one or more pieces of
data into the function. Pieces of data that are sent into a function are known as arguments.
The function can use its arguments in calculations or other operations.

VideoNote
Passing Arguments
to a Function

If you want a function to receive arguments when it is called, you must equip the function
with one or more parameter variables. A parameter variable, often simply called a
parameter, is a special variable that is assigned the value of an argument when a function
is called. Here is an example of a function that has a parameter variable:

def show_double(number):
result = number * 2
print(result)

This function’s name is show_double. Its purpose is to accept a number as an argument
and display the value of that number doubled. Look at the function header and notice the
word number that appear inside the parentheses. This is the name of a parameter variable.
This variable will be assigned the value of an argument when the function is called.
Program 3-6 demonstrates the function in a complete program.

Program 3-6 (pass_arg.py)

1 # This program demonstrates an argument being
2 # passed to a function.
3
4 def main():
5 value = 5
6 show_double(value)
7
8 # The show_double function accepts an argument
9 # and displays double its value.

10 def show_double(number):
11 result = number * 2
12 print(result)
13
14 # Call the main function.
15 main()

Program Output

10

When this program runs, the main function is called in line 15. Inside the main function,
line 5 creates a local variable named value, assigned the value 5. Then the following state-
ment in line 6 calls the show_double function:

show_double(value)

Notice that value appears inside the parentheses. This means that value is being passed
as an argument to the show_double function, as shown in Figure 3-13 When this state-
ment executes, the show_double function will be called and the number parameter will
be assigned the same value as the value variable. This is shown in Figure 3-14.

98 Chapter 3 Simple Functions

Let’s step through the show_double function. As we do, remember that the number param-
eter variable will be assigned the value that was passed to it as an argument. In this pro-
gram, that number is 5.

Line 11 assigns the value of the expression number * 2 to a local variable named result.
Because number references the value 5, this statement assigns 10 to result. Line 12 displays
the result variable.

The following statement shows how the show_double function can be called with a nu-
meric literal passed as an argument:

show_double(50)

This statement executes the show_double function, assigning 50 to the number parameter.
The function will print 100.

Parameter Variable Scope
Earlier in this chapter, you learned that a variable’s scope is the part of the program in
which the variable may be accessed. A variable is visible only to statements inside the
variable’s scope. A parameter variable’s scope is the function in which the parameter is
used. All of the statements inside the function can access the parameter variable, but no
statement outside the function can access it.

3.5 Passing Arguments to Functions 99

Figure 3-13 The value variable is passed as an argument

Figure 3-14 The value variable and the number parameter reference the same value

def main():

 value = 5

 show_double(value)

def show_double(number):

 result = number * 2

 print(result)

def main():

 value = 5

 show_double(value)

def show_double(number):

 result = number * 2

 print(result)

5

value

number

In the Spotlight:
Passing an Argument to a Function
Your friend Michael runs a catering company. Some of the ingredients that his recipes
require are measured in cups. When he goes to the grocery store to buy those ingredients,
however, they are sold only by the fluid ounce. He has asked you to write a simple program
that converts cups to fluid ounces.

You design the following algorithm:

1. Display an introductory screen that explains what the program does.
2. Get the number of cups.
3. Convert the number of cups to fluid ounces and display the result.

This algorithm lists the top level of tasks that the program needs to perform, and becomes
the basis of the program’s main function. Figure 3-15 shows the program’s structure in a
hierarchy chart.

As shown in the hierarchy chart, the main function will call two other functions.
Here are summaries of those functions:

• intro—This function will display a message on the screen that explains what the pro-
gram does.

• cups_to_ounces—This function will accept the number of cups as an argument and
calculate and display the equivalent number of fluid ounces.

In addition to calling these functions, the main function will ask the user to enter the num-
ber of cups. This value will be passed to the cups_to_ounces function. The code for the
program is shown in Program 3-7.

Program 3-7 (cups_to_ounces.py)

1 # This program converts cups to fluid ounces.
2
3 def main():
4 # display the intro screen.

main()

cups_to_ounces
(cups)

intro()

Figure 3-15 Hierarchy chart for the program

100 Chapter 3 Simple Functions

5 intro()
6 # Get the number of cups.
7 cups_needed = int(input('Enter the number of cups: '))
8 # Convert the cups to ounces.
9 cups_to_ounces(cups_needed)

10
11 # The intro function displays an introductory screen.
12 def intro():
13 print('This program converts measurements')
14 print('in cups to fluid ounces. For your')
15 print('reference the formula is:')
16 print(' 1 cup = 8 fluid ounces')
17 print()
18
19 # The cups_to_ounces function accepts a number of
20 # cups and displays the equivalent number of ounces.
21 def cups_to_ounces(cups):
22 ounces = cups * 8
23 print('That converts to', ounces, 'ounces.')
24
25 # Call the main function.
26 main()

Program Output (with input shown in bold)

This program converts measurements
in cups to fluid ounces. For your
reference the formula is:

1 cup = 8 fluid ounces

Enter the number of cups: 4 e
That converts to 32 ounces.

3.5 Passing Arguments to Functions 101

Passing Multiple Arguments
Often it’s useful to write functions that can accept multiple arguments. Program 3-8 shows
a function named show_sum, that accepts two arguments. The function adds the two argu-
ments and displays their sum.

Program 3-8 (multiple_args.py)

1 # This program demonstrates a function that accepts
2 # two arguments.
3
4 def main():
5 print('The sum of 12 and 45 is')

(program continues)

Program 3-8 (continued)

6 show_sum(12, 45)
7
8 # The show_sum function accepts two arguments
9 # and displays their sum.

10 def show_sum(num1, num2):
11 result = num1 + num2
12 print(result)
13
14 # Call the main function.
15 main()

Program Output

The sum of 12 and 45 is
57

Notice that two parameter variable names, num1 and num2, appear inside the parentheses
in the show_sum function header. This is often referred to as a parameter list. Also notice
that a comma separates the variable names.

The statement in line 6 calls the show_sum function and passes two arguments: 12 and 45. These
arguments are passed by position to the corresponding parameter variables in the function. In
other words, the first argument is passed to the first parameter variable, and the second argu-
ment is passed to the second parameter variable. So, this statement causes 12 to be assigned to
the num1 parameter and 45 to be assigned to the num2 parameter, as shown in Figure 3-16.

102 Chapter 3 Simple Functions

Figure 3-16 Two arguments passed to two parameters

def main():

 print('The sum of 12 and 45 is')

 show_sum(12, 45)

def show_sum(num1, num2):

 result = num1 + num2

 print(result)

12num1

45num2

Suppose we were to reverse the order in which the arguments are listed in the function call,
as shown here:

show_sum(45, 12)

This would cause 45 to be passed to the num1 parameter and 12 to be passed to the num2
parameter. The following code shows another example. This time we are passing variables
as arguments.

Program 3-9 (string_args.py)

1 # This program demonstrates passing two string
2 # arguments to a function.
3
4 def main():
5 first_name = input('Enter your first name: ')
6 last_name = input('Enter your last name: ')
7 print('Your name reversed is')
8 reverse_name(first_name, last_name)
9

10 def reverse_name(first, last):
11 print(last, first)
12
13 # Call the main function.
14 main()

Program Output (with input shown in bold)

Enter your first name: Matt e
Enter your last name: Hoyle e
Your name reversed is
Hoyle Matt

Making Changes to Parameters
When an argument is passed to a function in Python, the function parameter variable will
reference the argument’s value. However, any changes that are made to the parameter vari-
able will not affect the argument. To demonstrate this look at Program 3-10.

Program 3-10 (change_me.py)

1 # This program demonstrates what happens when you
2 # change the value of a parameter.
3

3.5 Passing Arguments to Functions 103

value1 = 2
value2 = 3
show_sum(value1, value2)

When the show_sum function executes as a result of this code, the num1 parameter will be
assigned the value 2 and the num2 parameter will be assigned the value 3.

Program 3-9 shows one more example. This program passes two strings as arguments to a
function.

(program continues)

Program 3-10 (continued)

4 def main():
5 value = 99
6 print('The value is', value)
7 change_me(value)
8 print('Back in main the value is', value)
9

10 def change_me(arg):
11 print('I am changing the value.')
12 arg = 0
13 print('Now the value is', arg)
14
15 # Call the main function.
16 main()

Program Output

The value is 99
I am changing the value.
Now the value is 0
Back in main the value is 99

104 Chapter 3 Simple Functions

Figure 3-17 The value variable is passed to the change_me function

99

value

arg

def main():

 value = 99

 print('The value is', value)

 change_me(value)

 print('Back in main the value is', value)

def change_me(arg):

 print('I am changing the value.')

 arg = 0

 print('Now the value is', arg)

The main function creates a local variable named value in line 5, assigned the value 99.
The print statement in line 6 displays 'The value is 99'. The value variable is then
passed as an argument to the change_me function in line 7. This means that in the
change_me function the arg parameter will also reference the value 99. This is shown in
Figure 3-17.

Inside the change_me function, in line 12, the arg parameter is assigned the value 0.
This reassignment changes arg, but it does not affect the value variable in main.
As shown in Figure 3-18, the two variables now reference different values in memory.
The print statement in line 13 displays 'Now the value is 0' and the function
ends.

Control of the program then returns to the main function. The next statement to execute is
in line 8. This statement displays 'Back in main the value is 99'. This proves that
even though the parameter variable arg was changed in the change_me function, the argu-
ment (the value variable in main) was not modified.

The form of argument passing that is used in Python, where a function cannot change the
value of an argument that was passed to it, is commonly called pass by value. This is a way
that one function can communicate with another function. The communication channel
works in only one direction, however. The calling function can communicate with the called
function, but the called function cannot use the argument to communicate with the calling
function. In Chapter 6 you will learn how to write a function that can communicate with
the part of the program that called it by returning a value.

Keyword Arguments
Programs 3-8 and 3-9 demonstrate how arguments are passed by position to parameter
variables in a function. Most programming languages match function arguments and
parameters this way. In addition to this conventional form of argument passing, the Python
language allows you to write an argument in the following format, to specify which param-
eter variable the argument should be passed to:

parameter_name=value

In this format, parameter_name is the name of a parameter variable and value is the value
being passed to that parameter. An argument that is written in accordance with this syntax
is known as a keyword argument.

Program 3-11 demonstrates keyword arguments. This program uses a function named
show_interest that displays the amount of simple interest earned by a bank account for a
number of periods. The function accepts the arguments principal (for the account princi-
pal), rate (for the interest rate per period), and periods (for the number of periods). When
the function is called in line 7, the arguments are passed as keyword arguments.

Program 3-11 (keyword_args.py)

1 # This program demonstrates keyword arguments.
2
3 def main():
4 # Show the amount of simple interest, using 0.01 as
5 # interest rate per period, 10 as the number of periods,

3.5 Passing Arguments to Functions 105

Figure 3-18 The value variable is passed to the change_me function

99

value

arg

def main():

 value = 99

 print('The value is', value)

 change_me(value)

 print('Back in main the value is', value)

def change_me(arg):

 print('I am changing the value.')

 arg = 0

 print('Now the value is', arg)

0

(program continues)

Program 3-11 (continued)

6 # and $10,000 as the principal.
7 show_interest(rate=0.01, periods=10, principal=10000.0)
8
9 # The show_interest function displays the amount of

10 # simple interest for a given principal, interest rate
11 # per period, and number of periods.
12
13 def show_interest(principal, rate, periods):
14 interest = principal * rate * periods
15 print('The simple interest will be $', \
16 format(interest, ',.2f'), \
17 sep='')
18
19 # Call the main function.
20 main()

Program Output

The simple interest will be $1000.00.

Notice in line 7 that the order of the keyword arguments does not match the order of the
parameters in the function header in line 13. Because a keyword argument specifies which
parameter the argument should be passed into, its position in the function call does not matter.

Program 3-12 shows another example. This is a variation of the string_args program shown
in Program 3-9. This version uses keyword arguments to call the reverse_name function.

Program 3-12 (keyword_string_args.py)

1 # This program demonstrates passing two strings as
2 # keyword arguments to a function.
3
4 def main():
5 first_name = input('Enter your first name: ')
6 last_name = input('Enter your last name: ')
7 print('Your name reversed is')
8 reverse_name(last=last_name, first=first_name)
9

10 def reverse_name(first, last):
11 print(last, first)
12
13 # Call the main function.
14 main()

Program Output (with input shown in bold)

Enter your first name: Matt e
Enter your last name: Hoyle e
Your name reversed is
Hoyle Matt

106 Chapter 3 Simple Functions

Mixing Keyword Arguments with Positional Arguments

It is possible to mix positional arguments and keyword arguments in a function call, but
the positional arguments must appear first, followed by the keyword arguments. Otherwise
an error will occur. Here is an example of how we might call the show_interest function
of Program 3-10 using both positional and keyword arguments:

show_interest(10000.0, rate=0.01, periods=10)

In this statement, the first argument, 10000.0, is passed by its position to the principal
parameter. The second and third arguments are passed as keyword arguments. The follow-
ing function call will cause an error, however, because a non-keyword argument follows a
keyword argument:

This will cause an ERROR!
show_interest(1000.0, rate=0.01, 10)

Checkpoint

3.13 What are the pieces of data that are passed into a function called?

3.14 What are the variables that receive pieces of data in a function called?

3.15 What is a parameter variable’s scope?

3.16 When a parameter is changed, does this affect the argument that was passed into
the parameter?

3.17 The following statements call a function named show_data. Which of the
statements passes arguments by position, and which passes keyword arguments?

a) show_data(name='Kathryn', age=25)
b) show_data('Kathryn', 25)

3.6 Global Variables and Global Constants

CONCEPT: A global variable is accessible to all the functions in a program file.

You’ve learned that when a variable is created by an assignment statement inside a func-
tion, the variable is local to that function. Consequently, it can be accessed only by statements
inside the function that created it. When a variable is created by an assignment statement
that is written outside all the functions in a program file, the variable is global. A global
variable can be accessed by any statement in the program file, including the statements in
any function. For example, look at Program 3-13.

Program 3-13 (global1.py)

1 # Create a global variable.
2 my_value = 10
3
4 # The show_value function prints
5 # the value of the global variable.

3.6 Global Variables and Global Constants 107

(program continues)

Program 3-13 (continued)

6 def show_value():
7 print(my_value)
8
9 # Call the show_value function.

10 show_value()

Program Output

10

The assignment statement in line 2 creates a variable named my_value. Because this state-
ment is outside any function, it is global. When the show_value function executes, the
statement in line 7 prints the value referenced by my_value.

An additional step is required if you want a statement in a function to assign a value to a
global variable. In the function you must declare the global variable, as shown in Program 3-14.

Program 3-14 (global2.py)

1 # Create a global variable.
2 number = 0
3
4 def main():
5 global number
6 number = int(input('Enter a number: '))
7 show_number()
8
9 def show_number():

10 print('The number you entered is', number)
11
12 # Call the main function.
13 main()

Program Output

Enter a number: 55 e
The number you entered is 55

The assignment statement in line 2 creates a global variable named number. Notice that inside
the main function, line 5 uses the global key word to declare the number variable. This state-
ment tells the interpreter that the main function intends to assign a value to the global number
variable. That’s just what happens in line 6. The value entered by the user is assigned to number.

Most programmers agree that you should restrict the use of global variables, or not use
them at all. The reasons are as follows:

• Global variables make debugging difficult. Any statement in a program file can
change the value of a global variable. If you find that the wrong value is being

108 Chapter 3 Simple Functions

stored in a global variable, you have to track down every statement that accesses it
to determine where the bad value is coming from. In a program with thousands of
lines of code, this can be difficult.

• Functions that use global variables are usually dependent on those variables. If you
want to use such a function in a different program, most likely you will have to
redesign it so it does not rely on the global variable.

• Global variables make a program hard to understand. A global variable can be mod-
ified by any statement in the program. If you are to understand any part of the pro-
gram that uses a global variable, you have to be aware of all the other parts of the
program that access the global variable.

In most cases, you should create variables locally and pass them as arguments to the func-
tions that need to access them.

Global Constants
Although you should try to avoid the use of global variables, it is permissible to use global
constants in a program. A global constant is a global name that references a value that
cannot be changed. Because a global constant’s value cannot be changed during the pro-
gram’s execution, you do not have to worry about many of the potential hazards that are
associated with the use of global variables.

Although the Python language does not allow you to create true global constants, you
can simulate them with global variables. If you do not declare a global variable with the
global key word inside a function, then you cannot change the variable’s assignment inside
that function. The following In the Spotlight section demonstrates how global variables
can be used in Python to simulate global constants.

3.6 Global Variables and Global Constants 109

In the Spotlight:
Using Global Constants
Marilyn works for Integrated Systems, Inc., a software company that has a reputation for
providing excellent fringe benefits. One of their benefits is a quarterly bonus that is paid to
all employees. Another benefit is a retirement plan for each employee. The company con-
tributes 5 percent of each employee’s gross pay and bonuses to their retirement plans.
Marilyn wants to write a program that will calculate the company’s contribution to an
employee’s retirement account for a year. She wants the program to show the amount of
contribution for the employee’s gross pay and for the bonuses separately. Here is an algorithm
for the program:

Get the employee’s annual gross pay.
Get the amount of bonuses paid to the employee.
Calculate and display the contribution for the gross pay.
Calculate and display the contribution for the bonuses.

The code for the program is shown in Program 3-15.

110 Chapter 3 Simple Functions

Program 3-15 (retirement.py)

1 # The following is used as a global constant
2 # the contribution rate.
3 CONTRIBUTION_RATE = 0.05
4
5 def main():
6 gross_pay = float(input('Enter the gross pay: '))
7 bonus = float(input('Enter the amount of bonuses: '))
8 show_pay_contrib(gross_pay)
9 show_bonus_contrib(bonus)

10
11 # The show_pay_contrib function accepts the gross
12 # pay as an argument and displays the retirement
13 # contribution for that amount of pay.
14 def show_pay_contrib(gross):
15 contrib = gross * CONTRIBUTION_RATE
16 print('Contribution for gross pay: $', \
17 format(contrib, ',.2f'), \
18 sep='')
19
20 # The show_bonus_contrib function accepts the
21 # bonus amount as an argument and displays the
22 # retirement contribution for that amount of pay.
23 def show_bonus_contrib(bonus):
24 contrib = bonus * CONTRIBUTION_RATE
25 print('Contribution for gross pay: $', \
26 format(contrib, ',.2f'), \
27 sep='')
28
29 # Call the main function.
30 main()

Program Output (with input shown in bold)

Enter the gross pay: 80000.00 e
Enter the amount of bonuses: 20000.00 e
Contribution for gross pay: $4000.00
Contribution for bonuses: $1000.00

First, notice the global declaration in line 3:

CONTRIBUTION_RATE = 0.05

CONTRIBUTION_RATE will be used as a global constant to represent the percentage of an
employee’s pay that the company will contribute to a retirement account. It is a common
practice to write a constant’s name in all uppercase letters. This serves as a reminder that
the value referenced by the name is not to be changed in the program.

The CONTRIBUTION_RATE constant is used in the calculation in line 15 (in the show_
pay_contrib function) and again in line 24 (in the show_bonus_contrib function).

Checkpoint

3.18 What is the scope of a global variable?

3.19 Give one good reason that you should not use global variables in a program.

3.20 What is a global constant? Is it permissible to use global constants in a program?

Review Questions
Multiple Choice

1. A group of statements that exist within a program for the purpose of performing a spe-
cific task is a(n) __________.
a. block
b. parameter
c. function
d. expression

2. A design technique that helps to reduce the duplication of code within a program and
is a benefit of using functions is __________.
a. code reuse
b. divide and conquer
c. debugging
d. facilitation of teamwork

3. The first line of a function definition is known as the __________.
a. body
b. introduction
c. initialization
d. header

4. You __________ the function to execute it.
a. define
b. call
c. import
d. export

5. A design technique that programmers use to break down an algorithm into functions
is known as __________.
a. top-down design
b. code simplification

Marilyn decided to use this global constant to represent the 5 percent contribution rate for
two reasons:

• It makes the program easier to read. When you look at the calculations in lines 15 and
24 it is apparent what is happening.

• Occasionally the contribution rate changes. When this happens, it will be easy to
update the program by changing the assignment statement in line 3.

Review Questions 111

112 Chapter 3 Simple Functions

c. code refactoring
d. hierarchical subtasking

6. A __________ is a diagram that gives a visual representation of the relationships
between functions in a program.
a. flowchart
b. function relationship chart
c. symbol chart
d. hierarchy chart

7. A __________ is a variable that is created inside a function.
a. global variable
b. local variable
c. hidden variable
d. none of the above; you cannot create a variable inside a function

8. A(n) __________ is the part of a program in which a variable may be accessed.
a. declaration space
b. area of visibility
c. scope
d. mode

9. A(n) __________ is a piece of data that is sent into a function.
a. argument
b. parameter
c. header
d. packet

10. A(n) __________ is a special variable that receives a piece of data when a function is called.
a. argument
b. parameter
c. header
d. packet

11. A variable that is visible to every function in a program file is a __________.
a. local variable
b. universal variable
c. program-wide variable
d. global variable

12. When possible, you should avoid using __________ variables in a program.
a. local
b. global
c. reference
d. parameter

True or False

1. The phrase “divide and conquer” means that all of the programmers on a team should
be divided and work in isolation.

2. Functions make it easier for programmers to work in teams.

3. Function names should be as short as possible.

Review Questions 113

4. Calling a function and defining a function mean the same thing.

5. A flowchart shows the hierarchical relationships between functions in a program.

6. A hierarchy chart does not show the steps that are taken inside a function.

7. A statement in one function can access a local variable in another function.

8. In Python you cannot write functions that accept multiple arguments.

9. In Python, you can specify which parameter an argument should be passed into a func-
tion call.

10. You cannot have both keyword arguments and non-keyword arguments in a function call.

Short Answer

1. How do functions help you to reuse code in a program?

2. Name and describe the two parts of a function definition.

3. When a function is executing, what happens when the end of the function block is
reached?

4. What is a local variable? What statements are able to access a local variable?

5. What is a local variable’s scope?

6. Why do global variables make a program difficult to debug?

Algorithm Workbench

1. Write a function named times_ten. The function should accept an argument and dis-
play the product of its argument multiplied times 10.

2. Examine the following function header, and then write a statement that calls the func-
tion, passing 12 as an argument.

def show_value(quantity):

3. Look at the following function header:

def my_function(a, b, c):

Now look at the following call to my_function:

my_function(3, 2, 1)

When this call executes, what value will be assigned to a? What value will be assigned
to b? What value will be assigned to c?

4. What will the following program display?

def main():
x = 1
y = 3.4
print(x, y)
change_us(x, y)
print(x, y)

def change_us(a, b):
a = 0
b = 0
print(a, b)

main()

114 Chapter 3 Simple Functions

5. Look at the following function definition:

def my_function(a, b, c):
d = (a + c) / b
print(d)

a. Write a statement that calls this function and uses keyword arguments to pass 2 into
a, 4 into b, and 6 into c.

b. What value will be displayed when the function call executes?

Programming Exercises
1. Kilometer Converter

Write a program that asks the user to enter a distance in kilometers, and then converts that
distance to miles. The conversion formula is as follows:

Miles � Kilometers � 0.6214

2. Sale Tax Program Refactoring

Programming Exercise #6 in Chapter 2 was the Sales Tax program. For that exercise you
were asked to write a program that calculates and displays the county and state sales tax
on a purchase. If you have already written that program, redesign it so the subtasks are in
functions. If you have not already written that program, write it using functions.

3. How Much Insurance?

Many financial experts advise that property owners should insure their homes or build-
ings for at least 80 percent of the amount it would cost to replace the structure. Write a
program that asks the user to enter the replacement cost of a building and then displays
the minimum amount of insurance he or she should buy for the property.

4. Automobile Costs

Write a program that asks the user to enter the monthly costs for the following expenses
incurred from operating his or her automobile: loan payment, insurance, gas, oil, tires, and
maintenance. The program should then display the total monthly cost of these expenses,
and the total annual cost of these expenses.

5. Property Tax

A county collects property taxes on the assessment value of property, which is 60 per-
cent of the property’s actual value. For example, if an acre of land is valued at $10,000,
its assessment value is $6,000. The property tax is then 64¢ for each $100 of the assess-
ment value. The tax for the acre assessed at $6,000 will be $38.40. Write a program that
asks for the actual value of a piece of property and displays the assessment value and
property tax.

VideoNote
The Kilometer
Converter Problem

Programming Exercises 115

6. Body Mass Index

Write a program that calculates and displays a person’s body mass index (BMI). The
BMI is often used to determine whether a person is overweight or underweight for his
or her height. A person’s BMI is calculated with the following formula:

BMI � weight � 703 / height2

where weight is measured in pounds and height is measured in inches.

7. Calories from Fat and Carbohydrates

A nutritionist who works for a fitness club helps members by evaluating their diets. As part
of her evaluation, she asks members for the number of fat grams and carbohydrate grams
that they consumed in a day. Then, she calculates the number of calories that result from
the fat, using the following formula:

calories from fat � fat grams � 9

Next, she calculates the number of calories that result from the carbohydrates, using the
following formula:

calories from carbs � carb grams � 4

The nutritionist asks you to write a program that will make these calculations.

8. Stadium Seating

There are three seating categories at a stadium. For a softball game, Class A seats cost $15,
Class B seats cost $12, and Class C seats cost $9. Write a program that asks how many tick-
ets for each class of seats were sold, and then displays the amount of income generated from
ticket sales.

9. Paint Job Estimator

A painting company has determined that for every 115 square feet of wall space, one gal-
lon of paint and eight hours of labor will be required. The company charges $20.00 per
hour for labor. Write a program that asks the user to enter the square feet of wall space to
be painted and the price of the paint per gallon. The program should display the following
data:

• The number of gallons of paint required
• The hours of labor required
• The cost of the paint
• The labor charges
• The total cost of the paint job

10. Monthly Sales Tax

A retail company must file a monthly sales tax report listing the total sales for the month,
and the amount of state and county sales tax collected. The state sales tax rate is 4 percent
and the county sales tax rate is 2 percent. Write a program that asks the user to enter the
total sales for the month. From this figure, the application should calculate and display the
following:

• The amount of county sales tax
• The amount of state sales tax
• The total sales tax (county plus state)

This page intentionally left blank

4.1 The if Statement

CONCEPT: The if statement is used to create a decision structure, which allows a pro-
gram to have more than one path of execution. The if statement causes
one or more statements to execute only when a Boolean expression is true.

A control structure is a logical design that controls the order in which a set of statements
execute. So far in this book we have used only the simplest type of control structure: the
sequence structure. A sequence structure is a set of statements that execute in the order that
they appear. For example, the following code is a sequence structure because the statements
execute from top to bottom.

name = input('What is your name? ')
age = int(input('What is your age? '))
print('Here is the data you entered:')
print('Name:', name)
print('Age:', age)

Even in Chapter 3, where you learned about functions, each function contained a block of
statements that are executed in the order that they appear. For example, the following func-
tion is a sequence structure because the statements in its block execute in the order that they
appear, from the beginning of the function to the end.

def show_double(value):
result = value * 2
print(result)

Decision Structures
and Boolean Logic4

TOPICS

4.1 The if Statement
4.2 The if-else Statement
4.3 Comparing Strings
4.4 Nested Decision Structures and

the if-elif-else Statement

4.5 Logical Operators
4.6 Boolean Variables

C
H

A
P

T
E

R

117

VideoNote
The if Statement

118 Chapter 4 Decision Structures and Boolean Logic

Although the sequence structure is heavily used in programming, it cannot handle every
type of task. This is because some problems simply cannot be solved by performing a set of
ordered steps, one after the other. For example, consider a pay calculating program that
determines whether an employee has worked overtime. If the employee has worked more
than 40 hours, he or she gets paid extra for all the hours over 40. Otherwise, the overtime
calculation should be skipped. Programs like this require a different type of control struc-
ture: one that can execute a set of statements only under certain circumstances. This can be
accomplished with a decision structure. (Decision structures are also known as selection
structures.)

In a decision structure’s simplest form, a specific action is performed only if a certain con-
dition exists. If the condition does not exist, the action is not performed. The flowchart
shown in Figure 4-1 shows how the logic of an everyday decision can be diagrammed as a
decision structure. The diamond symbol represents a true/false condition. If the condition
is true, we follow one path, which leads to an action being performed. If the condition is
false, we follow another path, which skips the action.

Wear a coat.

Cold
outside

True

False

Figure 4-1 A simple decision structure

In the flowchart, the diamond symbol indicates some condition that must be tested. In this
case, we are determining whether the condition Cold outside is true or false. If this con-
dition is true, the action Wear a coat is performed. If the condition is false, the action is
skipped. The action is conditionally executed because it is performed only when a certain
condition is true.

Programmers call the type of decision structure shown in Figure 4-1 a single alternative
decision structure. This is because it provides only one alternative path of execution. If the
condition in the diamond symbol is true, we take the alternative path. Otherwise, we exit
the structure. Figure 4-2 shows a more elaborate example, where three actions are taken
only when it is cold outside. It is still a single alternative decision structure, because there
is one alternative path of execution.

4.1 The if Statement 119

In Python we use the if statement to write a single alternative decision structure. Here is
the general format of the if statement:

if condition:
statement
statement
etc.

For simplicity, we will refer to the first line as the if clause. The if clause begins with the
word if, followed by a condition, which is an expression that will be evaluated as either
true or false. A colon appears after the condition. Beginning at the next line is a block of
statements. (Recall from Chapter 3 that all of the statements in a block must be consistently
indented. This indentation is required because the Python interpreter uses it to tell where
the block begins and ends.)

When the if statement executes, the condition is tested. If the condition is true, the
statements that appear in the block following the if clause are executed. If the condition
is false, the statements in the block are skipped.

Boolean Expressions and Relational Operators
As previously mentioned, the if statement tests an expression to determine whether it is
true or false. The expressions that are tested by the if statement are called Boolean

Wear a coat.

Cold
outside

True

False

Wear a hat.

Wear gloves.

Figure 4-2 A decision structure that performs three actions if it is cold outside

120 Chapter 4 Decision Structures and Boolean Logic

expressions, named in honor of the English mathematician George Boole. In the 1800s
Boole invented a system of mathematics in which the abstract concepts of true and false
can be used in computations.

Typically, the Boolean expression that is tested by an if statement is formed with a
relational operator. A relational operator determines whether a specific relationship
exists between two values. For example, the greater than operator (�) determines
whether one value is greater than another. The equal to operator (==) determines
whether two values are equal. Table 4-1 lists the relational operators that are available
in Python.

The following is an example of an expression that uses the greater than (�) operator to
compare two variables, length and width:

length � width

This expression determines whether the value referenced by length is greater than the
value referenced by width. If length is greater than width, the value of the expression is
true. Otherwise, the value of the expression is false. The following expression uses the less
than operator to determine whether length is less than width:

length � width

Table 4-2 shows examples of several Boolean expressions that compare the variables x
and y.

Table 4-1 Relational operators

Operator Meaning

� Greater than

� Less than

�= Greater than or equal to

�= Less than or equal to

== Equal to

!= Not equal to

Table 4-2 Boolean expressions using relational operators

Expression Meaning

x � y Is x greater than y?

x � y Is x less than y?

x �= y Is x greater than or equal to y?

x �= y Is x less than or equal to y?

x == y Is x equal to y?

x != y Is x not equal to y?

4.1 The if Statement 121

The >= and <= Operators

Two of the operators, �= and �=, test for more than one relationship. The �= operator
determines whether the operand on its left is greater than or equal to the operand on its
right. The �= operator determines whether the operand on its left is less than or equal to
the operand on its right.

For example, assume the following:

• a is assigned 4
• b is assigned 6
• c is assigned 4

These expressions are true:

b �= a
a �= c
a �= c
b �= 10

And these expressions are false:

a �= 5
b �= a

The == Operator

The == operator determines whether the operand on its left is equal to the operand on its
right. If the values referenced by both operands are the same, the expression is true.
Assuming that a is 4, the expression a == 4 is true and the expression a == 2 is false.

NOTE: The equality operator is two = symbols together. Don’t confuse this operator
with the assignment operator, which is one = symbol.

The != Operator

The != operator is the not-equal-to operator. It determines whether the operand on its left
is not equal to the operand on its right, which is the opposite of the == operator. As before,
assuming a is 4, b is 6, and c is 4, both a != b and b != c are true because a is not equal
to b and b is not equal to c. However, a != c is false because a is equal to c.

Putting It All Together
Let’s look at the following example of the if statement:

if sales � 50000:
bonus = 500.0

This statement uses the � operator to determine whether sales is greater than 50,000. If the
expression sales � 50000 is true, the variable bonus is assigned 500.0. If the expression
is false, however, the assignment statement is skipped. Figure 4-3 shows a flowchart for this
section of code.

122 Chapter 4 Decision Structures and Boolean Logic

The following example conditionally executes a block containing three statements. Figure
4-4 shows a flowchart for this section of code.

if sales � 50000:
bonus = 500.0
commission_rate = 0.12
print('You met your sales quota!')

Figure 4-3 Example decision structure

Figure 4-4 Example decision structure

bonus = 500.0

sales > 50000
True

False

bonus = 500.0

sales > 50000
True

False

commission_rate
= 0.12

print ('You met
your sales quota!')

4.1 The if Statement 123

The following code uses the == operator to determine whether two values are equal. The
expression balance == 0 will be true if the balance variable is assigned 0. Otherwise the
expression will be false.

if balance == 0:
Statements appearing here will
be executed only if balance is
equal to 0.

The following code uses the != operator to determine whether two values are not equal.
The expression choice != 5 will be true if the choice variable does not reference the
value 5. Otherwise the expression will be false.

if choice != 5:
Statements appearing here will
be executed only if choice is
not equal to 5.

In the Spotlight:
Using the if Statement
Kathryn teaches a science class and her students are required to take three tests. She wants
to write a program that her students can use to calculate their average test score. She also
wants the program to congratulate the student enthusiastically if the average is greater than
95. Here is the algorithm in pseudocode:

Get the first test score
Get the second test score
Get the third test score
Calculate the average
Display the average
If the average is greater than 95:

Congratulate the user

Program 4-1 shows the code for the program.

Program 4-1 (test_average.py)

1 # This program gets three test scores and displays
2 # their average. It congratulates the user if the
3 # average is a high score.
4
5 # Global constant for a high score
6 HIGH_SCORE = 95
7
8 def main():
9 # Get the three test scores.

(program continues)

Nested Blocks
Program 4-1 is an example of a program that has a block inside a block. The main func-
tion has a block (in lines 9 through 24), and inside that block the if statement has a block
(in lines 23 through 24). This is shown in Figure 4-5.

As you learned in Chapter 3, Python requires you to indent the statements in a block. When
you have a block nested inside a block, the inner block must be further indented. As you
can see in Figure 4-5, four spaces are used to indent the main function’s block, and eight
spaces are used to indent the if statement’s block.

124 Chapter 4 Decision Structures and Boolean Logic

Program 4-1 (continued)

10 test1 = int(input('Enter the score for test 1: '))
11 test2 = int(input('Enter the score for test 2: '))
12 test3 = int(input('Enter the score for test 3: '))
13
14 # Calculate the average test score.
15 average = (test1 + test2 + test3) / 3
16
17 # Print the average.
18 print('The average score is', average)
19
20 # If the average is a high score,
21 # congratulate the user.
22 if average >= HIGH_SCORE:
23 print('Congratulations!')
24 print('That is a great average!')
25
26 # Call the main function
27 main()

Program Output (with input shown in bold)

Enter the score for test 1: 82 e
Enter the score for test 2: 76 e
Enter the score for test 3: 91 e
The average score is 83.0

Program Output (with input shown in bold)

Enter the score for test 1: 93 e
Enter the score for test 2: 99 e
Enter the score for test 3: 96 e
The average score is 96.0
Congratulations!
That is a great score.

4.2 The if-else Statement 125

Checkpoint

4.1 What is a control structure?

4.2 What is a decision structure?

4.3 What is a single alternative decision structure?

4.4 What is a Boolean expression?

4.5 What types of relationships between values can you test with relational operators?

4.6 Write an if statement that assigns 0 to x if y is equal to 20.

4.7 Write an if statement that assigns 0.2 to commissionRate if sales is greater than
or equal to 10000.

4.2 The if-else Statement

CONCEPT: An if-else statement will execute one block of statements if its condi-
tion is true, or another block if its condition is false.

The previous section introduced the single alternative decision structure (the if statement),
which has one alternative path of execution. Now we will look at the dual alternative deci-
sion structure, which has two possible paths of execution—one path is taken if a condition
is true, and the other path is taken if the condition is false. Figure 4-6 shows a flowchart
for a dual alternative decision structure.

The decision structure in the flowchart tests the condition temperature � 40. If this con-
dition is true, the statement print(”A little cold, isn't it?”) is performed. If the
condition is false, the statement print(”Nice weather we're having.”) is performed.

def main():
 # Get the three test scores.
 test1 = int(input('Enter the score for test 1: '))
 test2 = int(input('Enter the score for test 2: '))
 test3 = int(input('Enter the score for test 3: '))

 # Calculate the average test score.
 average = (test1 + test2 + test3) / 3

 # Print the average.
 print('The average score is', average)

 # If the average is a high score,
 # congratulate the user.
 if average >= HIGH_SCORE:
 print('Congratulations!')
 print('That is a great average!')

Call the main function.
main()

This is the main
function's block.

This is the if
statement's block.

Figure 4-5 Nested blocks

VideoNote
The if-else Statement

126 Chapter 4 Decision Structures and Boolean Logic

In code we write a dual alternative decision structure as an if-else statement. Here is the
general format of the if-else statement:

if condition:
statement
statement
etc.

else:
statement
statement
etc.

When this statement executes, the condition is tested. If it is true, the block of indented
statements following the if clause is executed, and then control of the program jumps to
the statement that follows the if-else statement. If the condition is false, the block of
indented statements following the else clause is executed, and then control of the program
jumps to the statement that follows the if-else statement. This action is described in
Figure 4-7.

Figure 4-7 Conditional execution in an if-else statement

temperature
< 40

print("Nice weather
we're having.")

print("A little cold,
isn't it?")

TrueFalse

Figure 4-6 A dual alternative decision structure

if condition:
 statement
 statement
 etc.
else:
 statement
 statement
 etc.

If the condition is true, this
block of statements is
executed.

Then, control jumps here,
to the statement following
the if-else statement.

if condition:
 statement
 statement
 etc.
else:
 statement
 statement
 etc.

If the condition is false, this
block of statements is
executed.

Then, control jumps here,
to the statement following
the if-else statement.

4.2 The if-else Statement 127

The following code shows an example of an if-else statement. This code matches the
flowchart that was shown in Figure 4-5.

if temperature � 40:
print("A little cold, isn't it?")

else:
print("Nice weather we're having.")

Indentation in the if-else Statement
When you write an if-else statement, follow these guidelines for indentation:

• Make sure the if clause and the else clause are aligned.
• The if clause and the else clause are each followed by a block of statements. Make

sure the statements in the blocks are consistently indented.

This is shown in Figure 4-8.

Figure 4-8 Indentation with an if-else statement

if temperature < 40:
 print("A little cold, isn't it?")
 print("Turn up the heat!")
else:
 print("Nice weather we're having.")
 print("Pass the sunscreen.")

The statements in each
block must be indented
consistently.

Align the if and
else clauses.

In the Spotlight:
Using the if-else Statement
Chris owns an auto repair business and has several employees. If any employee works over
40 hours in a week, he pays them 1.5 times their regular hourly pay rate for all hours over
40. He has asked you to design a simple payroll program that calculates an employee’s
gross pay, including any overtime wages. You design the following algorithm:

Get the number of hours worked.
Get the hourly pay rate.
If the employee worked more than 40 hours:

Calculate and display the gross pay with overtime.
Else:

Calculate and display the gross pay as usual.

Next, you go through the top-down design process (described in Chapter 3) and create the
hierarchy chart shown in Figure 4-9. As shown in the hierarchy chart, there are three func-
tions, summarized as follows:

• main—This function will be called when the program starts. It will get the number of
hours worked and the hourly pay rate as input from the user. It will then call either
the calc_pay_with_OT function or the calc_regular_pay function to calculate and
display the gross pay.

• calc_pay_with_OT—This function will calculate and display an employee’s pay with
overtime.

• calc_regular_pay—This function will calculate and display the gross pay for an
employee with no overtime.

Figure 4-9 Hierarchy chart

The code for the program is shown in Program 4-2. Notice that two global variables,
which are used as constants, are created in lines 2 and 3. BASE_HOURS is assigned 40,
which is the number of hours an employee can work in a week without getting paid
overtime. OT_MULTIPLIER is assigned 1.5, which is the pay rate multiplier for overtime
hours. This means that the employee’s hourly pay rate is multiplied by 1.5 for all over-
time hours.

Program 4-2 (auto_repair_payroll.py)

1 # Global constants
2 BASE_HOURS = 40 # Base hours per week
3 OT_MULTIPLIER = 1.5 # Overtime multiplier
4
5 # The main function gets the number of hours worked and
6 # the hourly pay rate. It calls either the calc_pay_with_OT
7 # function or the calc_regular_pay function to calculate
8 # and display the gross pay.
9 def main():
10 # Get the hours worked and the hourly pay rate.
11 hours_worked = float(input('Enter the number of hours worked: '))
12 pay_rate = float(input('Enter the hourly pay rate: '))
13
14 # Calculate and display the gross pay.
15 if hours_worked � BASE_HOURS:
16 calc_pay_with_OT(hours_worked, pay_rate)
17 else:
18 calc_regular_pay(hours_worked, pay_rate)
19
20 # The calc_pay_with_OT function calculates pay with
21 # overtime. It accepts the hours worked and the hourly

main()

calc_pay_with_OT
(hours, rate, gross)

calc_regular_pay
(hours, rate, gross)

128 Chapter 4 Decision Structures and Boolean Logic

Checkpoint

4.8 How does a dual alternative decision structure work?

4.9 What statement do you use in Python to write a dual alternative decision
structure?

4.10 When you write an if-else statement, under what circumstances do the
statements that appear after the else clause execute?

4.2 The if-else Statement 129

22 # pay rate as arguments. The gross pay is displayed.
23 def calc_pay_with_OT(hours, rate):
24 # Calculate the number of overtime hours worked.
25 overtime_hours = hours - BASE_HOURS
26
27 # Calculate the amount of overtime pay.
28 overtime_pay = overtime_hours * rate * OT_MULTIPLIER
29
30 # Calculate the gross pay.
31 gross_pay = BASE_HOURS * rate + overtime_pay
32
33 # Display the gross pay.
34 print('The gross pay is $', format(gross_pay, ',.2f'), sep='')
35
36 # The calc_regular_pay function calculates pay with
37 # no overtime. It accepts the hours worked and the hourly
38 # pay rate as arguments. The gross pay is displayed.
39 def calc_regular_pay(hours, rate):
40 # Calculate the gross pay.
41 gross_pay = hours * rate
42
43 # Display the gross pay.
44 print('The gross pay is $', format(gross_pay, ',.2f'), sep='')
45
46 # Call the main function.
47 main()

Program Output (with input shown in bold)

Enter the number of hours worked: 40 e
Enter the hourly pay rate: 20 e
The gross pay is $800.00.

Program Output (with input shown in bold)

Enter the number of hours worked: 50 e
Enter the hourly pay rate: 20 e
The gross pay is $1,100.00.

130 Chapter 4 Decision Structures and Boolean Logic

4.3 Comparing Strings

CONCEPT: Python allows you to compare strings. This allows you to create decision
structures that test the value of a string.

You saw in the preceding examples how numbers can be compared in a decision structure.
You can also compare strings. For example, look at the following code:

name1 = 'Mary'
name2 = 'Mark'
if name1 == name2:

print('The names are the same.')
else:

print('The names are NOT the same.')

The == operator compares name1 and name2 to determine whether they are equal. Because
the strings 'Mary' and 'Mark' are not equal, the else clause will display the message 'The
names are NOT the same.'

Let’s look at another example. Assume the month variable references a string. The follow-
ing code uses the != operator to determine whether the value referenced by month is not
equal to 'October'.

if month != 'October':
print('This is the wrong time for Octoberfest!')

Program 4-3 is a complete program demonstrating how two strings can be compared. The
program prompts the user to enter a password and then determines whether the string
entered is equal to 'prospero'.

Program 4-3 (password.py)

1 # This program compares two strings.
2 # Get a password from the user.
3 password = input('Enter the password: ')
4
5 # Determine whether the correct password
6 # was entered.
7 if password == 'prospero':
8 print('Password accepted.')
9 else:

10 print('Sorry, that is the wrong password.')

Program Output (with input shown in bold)

Enter the password: ferdinand e
Sorry, that is the wrong password.

Program Output (with input shown in bold)

Enter the password: prospero e
Password accepted.

4.3 Comparing Strings 131

String comparisons are case sensitive. For example, the strings 'saturday' and
'Saturday' are not equal because the "s" is lowercase in the first string, but uppercase in
the second string. The following sample session with Program 4-3 shows what happens
when the user enters Prospero as the password (with an uppercase P).

Program Output (with input shown in bold)

Enter the password: Prospero e
Sorry, that is the wrong password.

TIP: In Chapter 6 you will learn how to manipulate strings so that case-insensitive
comparisons can be performed.

Other String Comparisons
In addition to determining whether strings are equal or not equal, you can also determine
whether one string is greater than or less than another string. This is a useful capability
because programmers commonly need to design programs that sort strings in some order.

Recall from Chapter 1 that computers do not actually store characters, such as A, B, C, and
so on, in memory. Instead, they store numeric codes that represent the characters. Chapter 1
mentioned that ASCII (the American Standard Code for Information Interchange) is a
commonly used character coding system. You can see the set of ASCII codes in Appendix C,
but here are some facts about it:

• The uppercase characters A through Z are represented by the numbers 65 through 90.
• The lowercase characters a through z are represented by the numbers 97 through 122.
• When the digits 0 through 9 are stored in memory as characters, they are represented

by the numbers 48 through 57. (For example, the string 'abc123' would be stored
in memory as the codes 97, 98, 99, 49, 50, and 51.)

• A blank space is represented by the number 32.

In addition to establishing a set of numeric codes to represent characters in memory, ASCII
also establishes an order for characters. The character “A” comes before the character “B”,
which comes before the character “C”, and so on.

When a program compares characters, it actually compares the codes for the characters.
For example, look at the following if statement:

if 'a' � 'b':
print('The letter a is less than the letter b.')

132 Chapter 4 Decision Structures and Boolean Logic

This code determines whether the ASCII code for the character 'a' is less than the ASCII
code for the character 'b'. The expression 'a' � 'b' is true because the code for 'a' is
less than the code for 'b'. So, if this were part of an actual program it would display the
message 'The letter a is less than the letter b.'

Let’s look at how strings containing more than one character are typically compared.
Suppose a program uses the strings 'Mary' and 'Mark' as follows:

name1 = 'Mary'
name2 = 'Mark'

Figure 4-10 shows how the individual characters in the strings 'Mary' and 'Mark' would
actually be stored in memory, using ASCII codes.

Figure 4-10 Character codes for the strings 'Mary' and 'Mark'

Figure 4-11 Comparing each character in a string

M a r y

77 97 114 121 77 97 114 107

M a r k

77 97 114 121

77 97 114 107

M a r k

M a r y

When you use relational operators to compare these strings, the strings are compared
character-by-character. For example, look at the following code:

name1 = 'Mary'
name2 = 'Mark'
if name1 � name2:

print('Mary is greater than Mark')
else:

print('Mary is not greater than Mark')

The � operator compares each character in the strings 'Mary' and 'Mark', beginning with
the first, or leftmost, characters. This is shown in Figure 4-11.

Here is how the comparison takes place:

1. The 'M' in 'Mary' is compared with the 'M' in 'Mark'. Since these are the same, the
next characters are compared.

2. The 'a' in 'Mary' is compared with the 'a' in 'Mark'. Since these are the same, the
next characters are compared.

3. The 'r' in 'Mary' is compared with the 'r' in 'Mark'. Since these are the same, the
next characters are compared.

4. The 'y' in 'Mary' is compared with the 'k' in 'Mark'. Since these are not the same,
the two strings are not equal. The character 'y' has a higher ASCII code (121) than 'k'
(107), so it is determined that the string 'Mary' is greater than the string 'Mark'.

If one of the strings in a comparison is shorter than the other, only the corresponding charac-
ters will be compared. If the corresponding characters are identical, then the shorter string is

4.3 Comparing Strings 133

considered less than the longer string. For example, suppose the strings 'High' and 'Hi'
were being compared. The string 'Hi' would be considered less than 'High' because it is
shorter.

Program 4-4 shows a simple demonstration of how two strings can be compared with the
� operator. The user is prompted to enter two names and the program displays those two
names in alphabetical order.

Program 4-4 (sort_names.py)

1 # This program compare strings with the < operator.
2 # Get two names from the user.
3 name1 = input('Enter a name (last name first): ')
4 name2 = input('Enter another name (last name first): ')
5
6 # Display the names in alphabetical order.
7 print('Here are the names, listed alphabetically.')
8
9 if name1 < name2:

10 print(name1)
11 print(name2)
12 else:
13 print(name2)
14 print(name1)

Program Output (with input shown in bold)

Enter a name (last name first): Jones, Richard e
Enter another name (last name first) Costa, Joan e
Here are the names, listed alphabetically:
Costa, Joan
Jones, Richard

Checkpoint

4.11 What would the following code display?

if 'z' � 'a':
print('z is less than a.')

else:
print('z is not less than a.')

4.12 What would the following code display?

s1 = 'New York'
s2 = 'Boston'

134 Chapter 4 Decision Structures and Boolean Logic

if s1 � s2:
print(s2)
print(s1)

else:
print(s1)
print(s2)

4.4 Nested Decision Structures and the
if-elif-else Statement

CONCEPT: To test more than one condition, a decision structure can be nested
inside another decision structure.

In Section 4.1, we mentioned that a control structure determines the order in which a set
of statements execute. Programs are usually designed as combinations of different control
structures. For example, Figure 4-12 shows a flowchart that combines a decision structure
with two sequence structures.

Figure 4-12 Combining sequence structures with a decision structure

Wear a coat.

Cold
outside

True

False

Open the door.

Go outside.

Read thermometer.

Go to the window.

Start

End

Sequence structure

Sequence structure

Decision structure

4.4 Nested Decision Structures and the if-elif-else Statement 135

The flowchart in the figure starts with a sequence structure. Assuming you have an
outdoor thermometer in your window, the first step is Go to the window, and the next
step is Read thermometer. A decision structure appears next, testing the condition Cold
outside. If this is true, the action Wear a coat is performed. Another sequence struc-
ture appears next. The step Open the door is performed, followed by Go outside.

Quite often, structures must be nested inside other structures. For example, look at the
partial flowchart in Figure 4-13. It shows a decision structure with a sequence structure
nested inside it. The decision structure tests the condition Cold outside. If that condition
is true, the steps in the sequence structure are executed.

Figure 4-13 A sequence structure nested inside a decision structure

Wear a coat.

Cold
outside

True

False

Wear a hat.

Wear gloves.

Sequence
structure

Decision
structure

You can also nest decision structures inside other decision structures. In fact, this is a
common requirement in programs that need to test more than one condition. For exam-
ple, consider a program that determines whether a bank customer qualifies for a loan.
To qualify, two conditions must exist: (1) the customer must earn at least $30,000 per
year, and (2) the customer must have been employed for at least two years. Figure 4-14
shows a flowchart for an algorithm that could be used in such a program. Assume that
the salary variable is assigned the customer’s annual salary, and the years_on_job
variable is assigned the number of years that the customer has worked on his or her cur-
rent job.

136 Chapter 4 Decision Structures and Boolean Logic

If we follow the flow of execution, we see that the condition salary >= 30000 is tested. If
this condition is false, there is no need to perform further tests; we know that the customer
does not qualify for the loan. If the condition is true, however, we need to test the second con-
dition. This is done with a nested decision structure that tests the condition years_on_job
>= 2. If this condition is true, then the customer qualifies for the loan. If this condition is false,
then the customer does not qualify. Program 4-5 shows the code for the complete program.

Program 4-5 (loan_qualifier.py)

1 # This program determines whether a bank customer
2 # qualifies for a loan.
3
4 # Constants for minimum salary and minimum
5 # years on the job
6 MIN_SALARY = 30000.0
7 MIN_YEARS = 2
8
9 def main():

10 # Get the customer's annual salary.
11 salary = float(input('Enter your annual salary: '))
12

salary >= 30000

print('You must earn at
least $30,000 per year

to qualify.')

TrueFalse

years_on_job >= 2

print('You must have
been employed for at

least two years to
qualify.')

print('You qualify for
the loan.')

TrueFalse

Figure 4-14 A nested decision structure

4.4 Nested Decision Structures and the if-elif-else Statement 137

13 # Get the number of years on the current job.
14 years_on_job = int(input('Enter the number of ' +
15 'years employed: '))
16
17 # Determine whether the customer qualifies.
18 if salary >= MIN_SALARY:
19 if years_on_job >= MIN_YEARS:
20 print('You qualify for the loan.')
21 else:
22 print('You must have been employed', \
23 'for at least', MIN_YEARS, \
24 'years to qualify.')
25 else:
26 print('You must earn at least $', \
27 format(MIN_SALARY, ',.2f'), \
28 ' per year to qualify.', sep='')
29
30 # Call the main function.
31 main()

Program Output (with input shown in bold)

Enter your annual salary: 35000 e
Enter the number of years employed: 1 e
You must have been employed for at least 2 years to qualify.

Program Output (with input shown in bold)

Enter your annual salary: 25000 e

Enter the number of years employed: 5 e

You must earn at least $30,000.00 per year to qualify.

Program Output (with input shown in bold)

Enter your annual salary: 35000 e
Enter the number of years employed: 5 e
You qualify for the loan.

Look at the if-else statement that begins in line 18. It tests the condition salary >=
MIN_SALARY. If this condition is true, the if-else statement that begins in line 19 is executed.
Otherwise the program jumps to the else clause in line 25 and executes the statement in lines
26 through 28. The program then leaves the decision structure and the main function ends.

It’s important to use proper indentation in a nested decision structure. Not only is proper
indentation required by the Python interpreter, but it also makes it easier for you, the
human reader of your code, to see which actions are performed by each part of the struc-
ture. Follow these rules when writing nested if statements:

• Make sure each else clause is aligned with its matching if clause. This is shown in
Figure 4-15.

• Make sure the statements in each block are consistently indented. The shaded parts
of Figure 4-16 show the nested blocks in the decision structure. Notice that each state-
ment in each block is indented the same amount.

138 Chapter 4 Decision Structures and Boolean Logic

Testing a Series of Conditions
In the previous example you saw how a program can use nested decision structures to test more
than one condition. It is not uncommon for a program to have a series of conditions to test,
and then perform an action depending on which condition is true. One way to accomplish this
is to have a decision structure with numerous other decision structures nested inside it. For
example, consider the program presented in the following In the Spotlight section.

if salary >= MIN_SALARY:
 if years_on_job >= MIN_YEARS:
 print('You qualify for the loan.')
 else:
 print('You must have been employed', \
 'for at least', MIN_YEARS, \
 'years to qualify.')
else:
 print('You must earn at least $', \
 format(MIN_SALARY, ',.2f'), \
 ' per year to qualify.', sep='')

This if
and else

go together.

This if
and else

go together.

if salary >= MIN_SALARY:
 if years_on_job >= MIN_YEARS:
 print('You qualify for the loan.')
 else:
 print('You must have been employed', \
 'for at least', MIN_YEARS, \
 'years to qualify.')
else:
 print('You must earn at least $', \
 format(MIN_SALARY, ',.2f'), \
 ' per year to qualify.', sep='')

Figure 4-15 Alignment of if and else clauses

Figure 4-16 Nested blocks

In the Spotlight:
Multiple Nested Decision Structures
Dr. Suarez teaches a literature class and uses the following 10 point grading scale for all of
his exams:

Test Score Grade

90 and above A

80–89 B

70–79 C

60–69 D

Below 60 F

4.4 Nested Decision Structures and the if-elif-else Statement 139

He has asked you to write a program that will allow a student to enter a test score and then
display the grade for that score. Here is the algorithm that you will use:

1. Ask the user to enter a test score.
2. Determine the grade in the following manner:

If the score is greater than or equal to 90, then the grade is A.
Else, if the score is greater than or equal to 80, then the grade is B.

Else, if the score is greater than or equal to 70, then the grade is C.
Else, if the score is greater than or equal to 60, then the grade is D.

Else, the grade is F.

You decide that the process of determining the grade will require several nested decision
structures, as shown in Figure 4-17. Program 4-6 shows the code for the program. The code
for the nested decision structures is in lines 15 through 27.

Figure 4-17 Nested decision structure to determine a grade

TrueFalse score
>= 90

TrueFalse score
>= 80

TrueFalse score
>= 70

TrueFalse score
>= 60

print('Your
grade is F.')

print('Your
grade is D.')

print('Your
grade is C.')

print('Your
grade is B.')

print('Your
grade is A.')

Program 4-6 (grader.py)

1 # This program gets a numeric test score from the
2 # user and displays the corresponding letter grade.
3
4 # Constants for the grade thresholds
5 A_SCORE = 90

(program continues)

140 Chapter 4 Decision Structures and Boolean Logic

The if-elif-else Statement
Even though Program 4-6 is a simple example, the logic of the nested decision structure is
fairly complex. Python provides a special version of the decision structure known as the
if-elif-else statement, which makes this type of logic simpler to write. Here is the gen-
eral format of the if-elif-else statement:

if condition_1:
statement
statement
etc.

elif condition_2:
statement

Program 4-6 (continued)

6 B_SCORE = 80
7 C_SCORE = 70
8 D_SCORE = 60
9

10 def main():
11 # Get a test score from the user.
12 score = int(input('Enter your test score: '))
13
14 # Determine the grade.
15 if score >= A_SCORE:
16 print('Your grade is A.')
17 else:
18 if score >= B_SCORE:
19 print('Your grade is B.')
20 else:
21 if score >= C_SCORE:
22 print('Your grade is C.')
23 else:
24 if score >= D_SCORE:
25 print('Your grade is D.')
26 else:
27 print('Your grade is F.')
28
29 # Call the main function.
30 main()

Program Output (with input shown in bold)

Enter your test score: 78 e
Your grade is C.

Program Output (with input shown in bold)

Enter your test score: 84 e
Your grade is B.

4.4 Nested Decision Structures and the if-elif-else Statement 141

statement
etc.

Insert as many elif clauses as necessary . . .

else:
statement
statement
etc.

When the statement executes, condition_1 is tested. If condition_1 is true, the block of
statements that immediately follow is executed, up to the elif clause. The rest of the struc-
ture is ignored. If condition_1 is false, however, the program jumps to the very next elif
clause and tests condition_2. If it is true, the block of statements that immediately follow
is executed, up to the next elif clause. The rest of the structure is then ignored. This process
continues until a condition is found to be true, or no more elif clauses are left. If no con-
dition is true, the block of statements following the else clause is executed.

The following is an example of the if-elif-else statement. This code works the same as
the nested decision structure in lines 15 through 27 of Program 4-6.

if score >= A_SCORE:
print('Your grade is A.')

elif score >= B_SCORE:
print('Your grade is B.')

elif score >= C_SCORE:
print('Your grade is C.')

elif score >= D_SCORE:
print('Your grade is D.')

else:
print('Your grade is F.')

Notice the alignment and indentation that is used with the if-elif-else statement: The if,
elif, and else clauses are all aligned, and the conditionally executed blocks are indented.

The if-elif-else statement is never required because its logic can be coded with nested
if-else statements. However, a long series of nested if-else statements has two partic-
ular disadvantages when you are debugging code:

• The code can grow complex and become difficult to understand.
• Because of the required indentation, a long series of nested if-else statements can

become too long to be displayed on the computer screen without horizontal scrolling.
Also, long statements tend to “wrap around” when printed on paper, making the code
even more difficult to read.

The logic of an if-elif-else statement is usually easier to follow than a long series of
nested if-else statements. And, because all of the clauses are aligned in an if-elif-else
statement, the lengths of the lines in the statement tend to be shorter.

Checkpoint

4.13 Convert the following code to an if-elif-else statement:

if number == 1:
print('One')

142 Chapter 4 Decision Structures and Boolean Logic

else:
if number == 2:

print('Two')
else:

if number == 3:
print('Three')

else:
print('Unknown')

4.5 Logical Operators

CONCEPT: The logical and operator and the logical or operator allow you to con-
nect multiple Boolean expressions to create a compound expression. The
logical not operator reverses the truth of a Boolean expression.

Python provides a set of operators known as logical operators, which you can use to cre-
ate complex Boolean expressions. Table 4-3 describes these operators.

Table 4-4 shows examples of several compound Boolean expressions that use logical
operators.

Table 4-3 Logical operators

Operator Meaning

and The and operator connects two Boolean expressions into one compound expres-
sion. Both subexpressions must be true for the compound expression to be true.

or The or operator connects two Boolean expressions into one compound expres-
sion. One or both subexpressions must be true for the compound expression to
be true. It is only necessary for one of the subexpressions to be true, and it does
not matter which.

not The not operator is a unary operator, meaning it works with only one operand.
The operand must be a Boolean expression. The not operator reverses the truth
of its operand. If it is applied to an expression that is true, the operator returns
false. If it is applied to an expression that is false, the operator returns true.

Table 4-4 Compound Boolean expressions using logical operators

Expression Meaning

x � y and a � b Is x greater than y AND is a less than b?

x == y or x == z Is x equal to y OR is x equal to z?

not (x � y) Is the expression x � y NOT true?

4.5 Logical Operators 143

The and Operator
The and operator takes two Boolean expressions as operands and creates a compound
Boolean expression that is true only when both subexpressions are true. The following is
an example of an if statement that uses the and operator:

if temperature � 20 and minutes � 12:
print('The temperature is in the danger zone.')

In this statement, the two Boolean expressions temperature � 20 and minutes � 12 are
combined into a compound expression. The print function will be called only if temper-
ature is less than 20 and minutes is greater than 12. If either of the Boolean subexpres-
sions is false, the compound expression is false and the message is not displayed.

Table 4-5 shows a truth table for the and operator. The truth table lists expressions show-
ing all the possible combinations of true and false connected with the and operator. The
resulting values of the expressions are also shown.

Table 4-5 Truth table for the and operator

Expression Value of the Expression

true and false false

false and true false

false and false false

true and true true

Table 4-6 Truth table for the or operator

Expression Value of the Expression

true or false true

false or true true

false or false false

true or true true

As the table shows, both sides of the and operator must be true for the operator to return
a true value.

The or Operator
The or operator takes two Boolean expressions as operands and creates a compound
Boolean expression that is true when either of the subexpressions is true. The following is
an example of an if statement that uses the or operator:

if temperature � 20 or temperature � 100:
print('The temperature is too extreme')

The print function will be called only if temperature is less than 20 or temperature is
greater than 100. If either subexpression is true, the compound expression is true. Table 4-6
shows a truth table for the or operator.

144 Chapter 4 Decision Structures and Boolean Logic

All it takes for an or expression to be true is for one side of the or operator to be true. It
doesn’t matter if the other side is false or true.

Short-Circuit Evaluation
Both the and and or operators perform short-circuit evaluation. Here’s how it works with
the and operator: If the expression on the left side of the and operator is false, the expres-
sion on the right side will not be checked. Because the compound expression will be false
if only one of the subexpressions is false, it would waste CPU time to check the remaining
expression. So, when the and operator finds that the expression on its left is false, it short-
circuits and does not evaluate the expression on its right.

Here’s how short-circuit evaluation works with the or operator: If the expression on the
left side of the or operator is true, the expression on the right side will not be checked.
Because it is only necessary for one of the expressions to be true, it would waste CPU time
to check the remaining expression.

The not Operator
The not operator is a unary operator that takes a Boolean expression as its operand and
reverses its logical value. In other words, if the expression is true, the not operator returns
false, and if the expression is false, the not operator returns true. The following is an if
statement using the not operator:

if not(temperature � 100):
print('This is below the maximum temperature.')

First, the expression (temperature � 100) is tested and a value of either true or false is
the result. Then the not operator is applied to that value. If the expression (temperature �

100) is true, the not operator returns false. If the expression (temperature � 100) is false,
the not operator returns true. The previous code is equivalent to asking: “Is the tempera-
ture not greater than 100?”

NOTE: In this example, we have put parentheses around the expression temperature
� 100. This is to make it clear that we are applying the not operator to the value of the
expression temperature � 100, not just to the temperature variable.

Table 4-7 shows a truth table for the not operator.

Table 4-7 Truth table for the not operator

Expression Value of the Expression

not true false

not false true

4.5 Logical Operators 145

The Loan Qualifier Program Revisited
In some situations the and operator can be used to simplify nested decision structures. For
example, recall that the loan qualifier program in Program 4-5 uses the following nested
if-else statements:

if salary >= MIN_SALARY:
if years_on_job >= MIN_YEARS:

print('You qualify for the loan.')
else:

print('You must have been employed', \
'for at least', MIN_YEARS, \
'years to qualify.')

else:
print('You must earn at least $', \

format(MIN_SALARY, ',.2f'), \
' per year to qualify.', sep='')

The purpose of this decision structure is to determine that a person’s salary is at least
$30,000 and that he or she has been at their current job for at least two years. Program 4-7
shows a way to perform a similar task with simpler code.

Program 4-7 (loan_qualifier2.py)

1 # This program determines whether a bank customer
2 # qualifies for a loan.
3
4 # Constants for minimum salary and minimum
5 # years on the job
6 MIN_SALARY = 30000.0
7 MIN_YEARS = 2
8
9 def main():

10 # Get the customer's annual salary.
11 salary = float(input('Enter your annual salary: '))
12
13 # Get the number of years on the current job.
14 years_on_job = int(input('Enter the number of ' +
15 'years employed: '))
16
17 # Determine whether the customer qualifies.
18 if salary >= MIN_SALARY and years_on_job >= MIN_YEARS:
19 print('You qualify for the loan.')
20 else:
21 print('You do not qualify for this loan.')
22
23 # Call the main function.
24 main()

(program continues)

146 Chapter 4 Decision Structures and Boolean Logic

Program 4-7 (continued)

Program Output (with input shown in bold)

Enter your annual salary: 35000 e
Enter the number of years employed: 1 e
You do not qualify for this loan.

Program Output (with input shown in bold)

Enter your annual salary: 25000 e
Enter the number of years employed: 5 e
You do not qualify for this loan.

Program Output (with input shown in bold)

Enter your annual salary: 35000 e
Enter the number of years employed: 5 e
You qualify for the loan.

The if-then-else statement in lines 18 through 21 tests the compound expression
salary �= MIN_SALARY and years_on_job �= MIN_YEARS. If both subexpressions are
true, the compound expression is true and the message “You qualify for the loan” is dis-
played. If either of the subexpressions is false, the compound expression is false and the
message “You do not qualify for this loan” is displayed.

NOTE: A careful observer will realize that Program 4-7 is similar to Program 4-5, but
it is not equivalent. If the user does not qualify for the loan, Program 4-7 displays only
the message “You do not qualify for this loan” whereas Program 4-5 displays one of
two possible messages explaining why the user did not qualify.

Yet Another Loan Qualifier Program
Suppose the bank is losing customers to a competing bank that isn’t as strict about whom
it loans money to. In response, the bank decides to change its loan requirements. Now, cus-
tomers have to meet only one of the previous conditions, not both. Program 4-8 shows the
code for the new loan qualifier program. The compound expression that is tested by the
if-else statement in line 18 now uses the or operator.

Program 4-8 (loan_qualifier3.py)

1 # This program determines whether a bank customer
2 # qualifies for a loan.
3
4 # Constants for minimum salary and minimum
5 # years on the job
6 MIN_SALARY = 30000.0
7 MIN_YEARS = 2
8
9 def main():

4.5 Logical Operators 147

10 # Get the customer's annual salary.
11 salary = float(input('Enter your annual salary: '))
12
13 # Get the number of years on the current job.
14 years_on_job = int(input('Enter the number of ' +
15 'years employed: '))
16
17 # Determine whether the customer qualifies.
18 if salary >= MIN_SALARY or years_on_job >= MIN_YEARS:
19 print('You qualify for the loan.')
20 else:
21 print('You do not qualify for this loan.')
22
23 # Call the main function.
24 main()

Program Output (with input shown in bold)

Enter your annual salary: 35000 e
Enter the number of years employed: 1 e
You qualify for the loan.

Program Output (with input shown in bold)

Enter your annual salary: 25000 e
Enter the number of years employed: 5 e
You qualify for the loan.

Program Output (with input shown in bold)

Enter your annual salary 12000 e
Enter the number of years employed: 1 e
You do not qualify for this loan.

Checking Numeric Ranges with Logical Operators
Sometimes you will need to design an algorithm that determines whether a numeric value is
within a specific range of values or outside a specific range of values. When determining
whether a number is inside a range, it is best to use the and operator. For example, the follow-
ing if statement checks the value in x to determine whether it is in the range of 20 through 40:

if x �= 20 and x �= 40:
print('The value is in the acceptable range.')

The compound Boolean expression being tested by this statement will be true only when x
is greater than or equal to 20 and less than or equal to 40. The value in x must be within
the range of 20 through 40 for this compound expression to be true.

When determining whether a number is outside a range, it is best to use the or operator.
The following statement determines whether x is outside the range of 20 through 40:

if x � 20 or x � 40:
print('The value is outside the acceptable range.')

148 Chapter 4 Decision Structures and Boolean Logic

It is important not to get the logic of the logical operators confused when testing for a range
of numbers. For example, the compound Boolean expression in the following code would
never test true:

This is an error!
if x � 20 and x � 40:

print('The value is outside the acceptable range.')

Obviously, x cannot be less than 20 and at the same time be greater than 40.

Checkpoint

4.14 What is a compound Boolean expression?

4.15 The following truth table shows various combinations of the values true and false
connected by a logical operator. Complete the table by circling T or F to indicate
whether the result of such a combination is true or false.

4.16 Assume the variables a = 2, b = 4, and c = 6. Circle the T or F for each of the
following conditions to indicate whether its value is true or false.

a == 4 or b � 2 T F
6 �= c and a � 3 T F
1 != b and c != 3 T F
a �= -1 or a �= b T F
not (a � 2) T F

4.17 Explain how short-circuit evaluation works with the and and or operators.

4.18 Write an if statement that displays the message “The number is valid” if the value
referenced by speed is within the range 0 through 200.

4.19 Write an if statement that displays the message “The number is not valid” if the
value referenced by speed is outside the range 0 through 200.

Logical Expression Result (circle T or F)

True and False T F

True and True T F

False and True T F

False and False T F

True or False T F

True or True T F

False or True T F

False or False T F

not True T F

not False T F

4.6 Boolean Variables

CONCEPT: A Boolean variable can reference one of two values: True or False.
Boolean variables are commonly used as flags, which indicate whether
specific conditions exist.

So far in this book we have worked with int, float, and str (string) variables. In addi-
tion to these data types, Python also provides a bool data type. The bool data type allows
you to create variables that may reference one of two possible values: True or False. Here
are examples of how we assign values to a bool variable:

hungry = True
sleepy = False

Boolean variables are most commonly used as flags. A flag is a variable that signals when
some condition exists in the program. When the flag variable is set to False, it indicates
the condition does not exist. When the flag variable is set to True, it means the condition
does exist.

For example, suppose a salesperson has a quota of $50,000. Assuming sales references
the amount that the salesperson has sold, the following code determines whether the quota
has been met:

if sales �= 50000.0:
sales_quota_met = True

else:
sales_quota_met = False

As a result of this code, the sales_quota_met variable can be used as a flag to indicate
whether the sales quota has been met. Later in the program we might test the flag in the
following way:

if sales_quota_met:
print('You have met your sales quota!')

This code displays 'You have met your sales quota!' if the bool variable
sales_quota_met is True. Notice that we did not have to use the == operator to explic-
itly compare the sales_quota_met variable with the value True. This code is equivalent
to the following:

if sales_quota_met == True:
print('You have met your sales quota!')

Checkpoint

4.20 What values can you assign to a bool variable?

4.21 What is a flag variable?

4.6 Boolean Variables 149

150 Chapter 4 Decision Structures and Boolean Logic

Review Questions
Multiple Choice

1. A __________ structure can execute a set of statements only under certain circum-
stances.
a. sequence
b. circumstantial
c. decision
d. Boolean

2. A __________ structure provides one alternative path of execution.
a. sequence
b. single alternative decision
c. one path alternative
d. single execution decision

3. A(n) __________ expression has a value of either true or false.
a. binary
b. decision
c. unconditional
d. Boolean

4. The symbols �, �, and == are all __________ operators.
a. relational
b. logical
c. conditional
d. ternary

5. A(n) _________ structure tests a condition and then takes one path if the condition is
true, or another path if the condition is false.
a. if statement
b. single alternative decision
c. dual alternative decision
d. sequence

6. You use a(n) __________ statement to write a single alternative decision structure.
a. test-jump
b. if
c. if-else
d. if-call

7. You use a(n) __________ statement to write a dual alternative decision structure.
a. test-jump
b. if
c. if-else
d. if-call

Review Questions 151

8. and, or, and not are __________ operators.
a. relational
b. logical
c. conditional
d. ternary

9. A compound Boolean expression created with the __________ operator is true only if
both of its subexpressions are true.
a. and
b. or
c. not
d. both

10. A compound Boolean expression created with the _________ operator is true if either
of its subexpressions is true.
a. and
b. or
c. not
d. either

11. The ___________ operator takes a Boolean expression as its operand and reverses its
logical value.
a. and
b. or
c. not
d. either

12. A ___________ is a Boolean variable that signals when some condition exists in the
program.
a. flag
b. signal
c. sentinel
d. siren

True or False

1. You can write any program using only sequence structures.

2. A program can be made of only one type of control structure. You cannot combine
structures.

3. A single alternative decision structure tests a condition and then takes one path if the
condition is true, or another path if the condition is false.

4. A decision structure can be nested inside another decision structure.

5. A compound Boolean expression created with the and operator is true only when both
subexpressions are true.

Short Answer

1. Explain what is meant by the term “conditionally executed.”

2. You need to test a condition and then execute one set of statements if the condition is
true. If the condition is false, you need to execute a different set of statements. What
structure will you use?

152 Chapter 4 Decision Structures and Boolean Logic

3. Briefly describe how the and operator works.

4. Briefly describe how the or operator works.

5. When determining whether a number is inside a range, which logical operator is it best
to use?

6. What is a flag and how does it work?

Algorithm Workbench

1. Write an if statement that assigns 20 to the variable y and assigns 40 to the variable
z if the variable x is greater than 100.

2. Write an if statement that assigns 0 to the variable b and assigns 1 to the variable c if
the variable a is less than 10.

3. Write an if-else statement that assigns 0 to the variable b if the variable a is less than
10. Otherwise, it should assign 99 to the variable b.

4. The following code contains several nested if-else statements. Unfortunately, it was
written without proper alignment and indentation. Rewrite the code and use the proper
conventions of alignment and indentation.

if score >= A_SCORE:
print('Your grade is A.')
else:
if score >= B_SCORE:
print('Your grade is B.')
else:
if score >= C_SCORE:
print('Your grade is C.')
else:
if score >= D_SCORE:
print('Your grade is D.')
else:
print('Your grade is F.')

5. Write nested decision structures that perform the following: If amount1 is greater than 10
and amount2 is less than 100, display the greater of amount1 and amount2.

6. Write an if-else statement that displays 'Speed is normal' if the speed vari-
able is within the range of 24 to 56. If the speed variable’s value is outside this range,
display 'Speed is abnormal'.

7. Write an if-else statement that determines whether the points variable is outside the
range of 9 to 51. If the variable’s value is outside this range it should display “Invalid
points.” Otherwise, it should display “Valid points.”

Programming Exercises
1. Roman Numerals

Write a program that prompts the user to enter a number within the range of 1 through 10.
The program should display the Roman numeral version of that number. If the number is
outside the range of 1 through 10, the program should display an error message. The fol-
lowing table shows the Roman numerals for the numbers 1 through 10:

Programming Exercises 153

2. Areas of Rectangles

The area of a rectangle is the rectangle’s length times its width. Write a program that asks
for the length and width of two rectangles. The program should tell the user which rectangle
has the greater area, or if the areas are the same.

3. Mass and Weight

Scientists measure an object’s mass in kilograms and its weight in newtons. If you know the
amount of mass of an object in kilograms, you can calculate its weight in newtons with the
following formula:

weight � mass � 9.8

Write a program that asks the user to enter an object’s mass, and then calculates its weight.
If the object weighs more than 1,000 newtons, display a message indicating that it is too
heavy. If the object weighs less than 10 newtons, display a message indicating that it is too
light.

4. Magic Dates

The date June 10, 1960, is special because when it is written in the following format, the
month times the day equals the year:

6/10/60

Design a program that asks the user to enter a month (in numeric form), a day, and a two-
digit year. The program should then determine whether the month times the day equals the
year. If so, it should display a message saying the date is magic. Otherwise, it should dis-
play a message saying the date is not magic.

5. Color Mixer

The colors red, blue, and yellow are known as the primary colors because they cannot be
made by mixing other colors. When you mix two primary colors, you get a secondary color,
as shown here:

When you mix red and blue, you get purple.
When you mix red and yellow, you get orange.
When you mix blue and yellow, you get green.

Number Roman Numeral

1 I

2 II

3 III

4 IV

5 V

6 VI

7 VII

8 VIII

9 IX

10 X

VideoNote
The Areas of
Rectangles Problem

154 Chapter 4 Decision Structures and Boolean Logic

Design a program that prompts the user to enter the names of two primary colors to mix.
If the user enters anything other than “red,” “blue,” or “yellow,” the program should dis-
play an error message. Otherwise, the program should display the name of the secondary
color that results.

6. Change for a Dollar Game

Create a change-counting game that gets the user to enter the number of coins required to make
exactly one dollar. The program should prompt the user to enter the number of pennies,
nickels, dimes, and quarters. If the total value of the coins entered is equal to one dollar, the pro-
gram should congratulate the user for winning the game. Otherwise, the program should dis-
play a message indicating whether the amount entered was more than or less than one dollar.

7. Book Club Points

Serendipity Booksellers has a book club that awards points to its customers based on the
number of books purchased each month. The points are awarded as follows:

• If a customer purchases 0 books, he or she earns 0 points.
• If a customer purchases 1 book, he or she earns 5 points.
• If a customer purchases 2 books, he or she earns 15 points.
• If a customer purchases 3 books, he or she earns 30 points.
• If a customer purchases 4 or more books, he or she earns 60 points.

Write a program that asks the user to enter the number of books that he or she has pur-
chased this month and displays the number of points awarded.

8. Software Sales

A software company sells a package that retails for $99. Quantity discounts are given
according to the following table:

Quantity Discount

10–19 20%

20–49 30%

50–99 40%

100 or more 50%

Write a program that asks the user to enter the number of packages purchased. The pro-
gram should then display the amount of the discount (if any) and the total amount of the
purchase after the discount.

9. Shipping Charges

The Fast Freight Shipping Company charges the following rates:

Weight of Package Rate per Pound

2 pounds or less $1.10

Over 2 pounds but not more than 6 pounds $2.20

Over 6 pounds but not more than 10 pounds $3.70

Over 10 pounds $3.80

Write a program that asks the user to enter the weight of a package and then displays the
shipping charges.

10. Body Mass Index Program Enhancement

In programming Exercise #6 in Chapter 3 you were asked to write a program that calcu-
lates a person’s body mass index (BMI). Recall from that exercise that the BMI is often used
to determine whether a person is overweight or underweight for their height. A person’s
BMI is calculated with the formula

BMI � weight � 703 / height2

where weight is measured in pounds and height is measured in inches. Enhance the pro-
gram so it displays a message indicating whether the person has optimal weight, is
underweight, or is overweight. A person’s weight is considered to be optimal if his or
her BMI is between 18.5 and 25. If the BMI is less than 18.5, the person is considered
to be underweight. If the BMI value is greater than 25, the person is considered to be
overweight.

11. Time Calculator

Write a program that asks the user to enter a number of seconds, and works as follows:

• There are 60 seconds in a minute. If the number of seconds entered by the user is greater
than or equal to 60, the program should display the number of minutes in that many
seconds.

• There are 3,600 seconds in an hour. If the number of seconds entered by the user is
greater than or equal to 3,600, the program should display the number of hours in that
many seconds.

• There are 86,400 seconds in a day. If the number of seconds entered by the user is greater
than or equal to 86,400, the program should display the number of days in that many
seconds.

Programming Exercises 155

This page intentionally left blank

5.1 Introduction to Repetition Structures

CONCEPT: A repetition structure causes a statement or set of statements to execute
repeatedly.

Programmers commonly have to write code that performs the same task over and over. For
example, suppose you have been asked to write a program that calculates a 10 percent sales
commission for several sales people. Although it would not be a good design, one approach
would be to write the code to calculate one sales person’s commission, and then repeat that
code for each sales person. For example, look at the following:

Get a salesperson's sales and commission rate.
sales = float(input('Enter the amount of sales: '))
comm_rate = float(input('Enter the commission rate: '))

Calculate the commission.
commission = sales * comm_rate

Display the commission.
print('The commission is $', format(commission, ',.2f', sep=''))

Get another salesperson's sales and commission rate.
sales = float(input('Enter the amount of sales: '))
comm_rate = float(input('Enter the commission rate: '))

Calculate the commission.
commission = sales * comm_rate

Repetition Structures5
TOPICS

5.1 Introduction to Repetition Structures
5.2 The while Loop: a Condition-

Controlled Loop
5.3 The for Loop: a Count-Controlled Loop

5.4 Calculating a Running Total
5.5 Sentinels
5.6 Input Validation Loops
5.7 Nested Loops

C
H

A
P

T
E

R

157

158 Chapter 5 Repetition Structures

Display the commission.
print('The commission is $', format(commission, ',.2f', sep=''))

Get another salesperson's sales and commission rate.
sales = float(input('Enter the amount of sales: '))
comm_rate = float(input('Enter the commission rate: '))

Calculate the commission.
commission = sales * comm_rate

Display the commission.
print('The commission is $', format(commission, ',.2f', sep=''))

And this code goes on and on . . .

As you can see, this code is one long sequence structure containing a lot of duplicated code.
There are several disadvantages to this approach, including the following:

• The duplicated code makes the program large.
• Writing a long sequence of statements can be time consuming.
• If part of the duplicated code has to be corrected or changed then the correction or

change has to be done many times.

Instead of writing the same sequence of statements over and over, a better way to
repeatedly perform an operation is to write the code for the operation once, and then
place that code in a structure that makes the computer repeat it as many times as nec-
essary. This can be done with a repetition structure, which is more commonly known
as a loop.

Condition-Controlled and Count-Controlled Loops
In this chapter, we will look at two broad categories of loops: condition-controlled and
count-controlled. A condition-controlled loop uses a true/false condition to control the
number of times that it repeats. A count-controlled loop repeats a specific number of times.
In Python you use the while statement to write a condition-controlled loop, and you use
the for statement to write a count-controlled loop. In this chapter, we will demonstrate
how to write both types of loops.

Checkpoint

5.1 What is a repetition structure?

5.2 What is a condition-controlled loop?

5.3 What is a count-controlled loop?

5.2 The while Loop: a Condition-Controlled Loop

CONCEPT: A condition-controlled loop causes a statement or set of statements to
repeat as long as a condition is true. In Python you use the while state-
ment to write a condition-controlled loop.

VideoNote
The while Loop

5.2 The while Loop: a Condition-Controlled Loop 159

The diamond symbol represents the condition that is tested. Notice what happens if the
condition is true: one or more statements are executed and the program’s execution flows
back to the point just above the diamond symbol. The condition is tested again, and if it is
true, the process repeats. If the condition is false, the program exits the loop. In a flowchart,
you will always recognize a loop when you see a flow line going back to a previous part of
the flowchart.

Here is the general format of the while loop in Python:

while condition:
statement
statement
etc.

For simplicity, we will refer to the first line as the while clause. The while clause begins
with the word while, followed by a Boolean condition that will be evaluated as either
true or false. A colon appears after the condition. Beginning at the next line is a block of
statements. (Recall from Chapter 3 that all of the statements in a block must be consis-
tently indented. This indentation is required because the Python interpreter uses it to tell
where the block begins and ends.)

When the while loop executes, the condition is tested. If the condition is true, the state-
ments that appear in the block following the while clause are executed, and then the loop
starts over. If the condition is false, the program exits the loop. Program 5-1 shows how
we might use a while loop to write the commission calculating program that was described
at the beginning of this chapter.

The while loop gets its name from the way it works: while a condition is true, do some
task. The loop has two parts: (1) a condition that is tested for a true or false value, and (2)
a statement or set of statements that is repeated as long as the condition is true. Figure 5-1
shows the logic of a while loop.

Figure 5-1 The logic of a while loop

Condition
True

False

Statement(s)

160 Chapter 5 Repetition Structures

Program 5-1 (commission.py)

1 # This program calculates sales commissions.
2 def main():
3 # Create a variable to control the loop.
4 keep_going = 'y'
5
6 # Calculate a series of commissions.
7 while keep_going == 'y':
8 # Get a salesperson's sales and commission rate.
9 sales = float(input('Enter the amount of sales: '))

10 comm_rate = float(input('Enter the commission rate: '))
11
12 # Calculate the commission.
13 commission = sales * comm_rate
14
15 # Display the commission.
16 print('The commission is $', \
17 format(commission, ',.2f'), sep='')
18
19 # See if the user wants to do another one.
20 keep_going = input('Do you want to calculate another ' + \
21 'commission (Enter y for yes): ')
22
23 # Call the main function.
24 main()

Program Output (with input shown in bold)

Enter the amount of sales: 10000.00 e

Enter the commission rate: 0.10 e
The commission is $1,000.00.
Do you want to calculate another commission (Enter y for yes): y e
Enter the amount of sales: 20000.00 e

Enter the commission rate: 0.15 e

The commission is $3,000.00.
Do you want to calculate another commission (Enter y for yes): y e
Enter the amount of sales: 12000.00 e

Enter the commission rate: 0.10 e

The commission is $1,200.00.
Do you want to calculate another commission (Enter y for yes): n e

In line 4 we use an assignment statement to create a variable named keep_going. Notice
that the variable is assigned the value 'y'. This initialization value is important, and in a
moment you will see why.

Line 7 is the beginning of a while loop, which starts like this:

while keep_going == 'y':

5.2 The while Loop: a Condition-Controlled Loop 161

Notice the condition that is being tested: keep_going == 'y'. The loop tests this condition,
and if it is true, the statements in lines 8 through 21 are executed. Then, the loop starts over at
line 7. It tests the expression keep_going == 'y' and if it is true, the statements in lines 8
through 21 are executed again. This cycle repeats until the expression keep_going == 'y' is
tested in line 7 and found to be false. When that happens, the program exits the loop. This is
illustrated in Figure 5-2.

Figure 5-2 The while loop

while keep_going == 'y':

 # Get a salesperson's sales and commission rate.
 sales = float(input('Enter the amount of sales: '))
 comm_rate = float(input('Enter the commission rate: '))

 # Calculate the commission.
 commission = sales * comm_rate

 # Display the commission.
 print('The commission is $', \
 format(commission, ',.2f'), sep='')

 # See if the user wants to do another one.
 keep_going = input('Do you want to calculate another ' + \
 'commission (Enter y for yes): ')

This condition is tested.

If the condition is true,
these statements are
executed, and then the
loop starts over.

If the condition is false,
these statements are
skipped and the
program exits the loop.

In order for this loop to stop executing, something has to happen inside the loop to make
the expression keep_going == 'y' false. The statement in lines 20 through 21 take care
of this. This statement displays the prompt “Do you want to calculate another commis-
sion (Enter y for yes).” The value that is read from the keyboard is assigned to the
keep_going variable. If the user enters y (and it must be a lowercase y), then the expres-
sion keep_going == 'y' will be true when the loop starts over. This will cause the state-
ments in the body of the loop to execute again. But if the user enters anything other than
lowercase y, the expression will be false when the loop starts over, and the program will
exit the loop.

Now that you have examined the code, look at the program output in the sample run. First,
the user entered 10000.00 for the sales and 0.10 for the commission rate. Then, the pro-
gram displayed the commission for that amount, which is $1,000.00. Next the user is
prompted “Do you want to calculate another commission? (Enter y for yes).” The user
entered y, and the loop started the steps over. In the sample run, the user went through this
process three times. Each execution of the body of a loop is known as an iteration. In the
sample run, the loop iterated three times.

Figure 5-3 shows a flowchart for the main function. In the flowchart we have a repetition
structure, which is the while loop. The condition keep_going == 'y' is tested, and if it
is true a series of statements are executed and the flow of execution returns to the point just
above the conditional test.

162 Chapter 5 Repetition Structures

The while Loop is a Pretest Loop
The while loop is known as a pretest loop, which means it tests its condition before per-
forming an iteration. Because the test is done at the beginning of the loop, you usually have

Figure 5-3 Flowchart for Program 5-1

keep_going == 'y'

False

Return

True

commission = sales *
comm_rate

Prompt the user to enter
the amount of sales and

assign it to sales.

Prompt the user to enter
the commission rate and
assign it to comm_rate.

Display the
commission

Prompt the user: 'Do you
want to calculate another
commission? (Enter y for
yes)' and assign the input

to keep_going.

Assign 'y' to keep_going

main()

5.2 The while Loop: a Condition-Controlled Loop 163

to perform some steps prior to the loop to make sure that the loop executes at least once.
For example, the loop in Program 5-1 starts like this:

while keep_going == 'y':

The loop will perform an iteration only if the expression keep_going == 'y' is true.
This means that (a) the keep_going variable has to exist, and (b) it has to reference
the value 'y'. To make sure the expression is true the first time that the loop executes,
we assigned the value 'y' to the keep_going variable in line 4 as follows:

keep_going = 'y'

By performing this step we know that the condition keep_going == 'y' will be true the
first time the loop executes. This is an important characteristic of the while loop: it will
never execute if its condition is false to start with. In some programs, this is exactly what
you want. The following In the Spotlight section gives an example.

In the Spotlight:
Designing a Program with a while Loop
A project currently underway at Chemical Labs, Inc. requires that a substance be continu-
ally heated in a vat. A technician must check the substance’s temperature every 15 minutes.
If the substance’s temperature does not exceed 102.5 degrees Celsius, then the technician
does nothing. However, if the temperature is greater than 102.5 degrees Celsius, the tech-
nician must turn down the vat’s thermostat, wait 5 minutes, and check the temperature
again. The technician repeats these steps until the temperature does not exceed 102.5 degrees
Celsius. The director of engineering has asked you to write a program that guides the tech-
nician through this process.

Here is the algorithm:

1. Get the substance’s temperature.
2. Repeat the following steps as long as the temperature is greater than 102.5 degrees

Celsius:
a. Tell the technician to turn down the thermostat, wait 5 minutes, and check the

temperature again.
b. Get the substance’s temperature.

3. After the loop finishes, tell the technician that the temperature is acceptable and to
check it again in 15 minutes.

After reviewing this algorithm, you realize that steps 2(a) and 2(b) should not be performed
if the test condition (temperature is greater than 102.5) is false to begin with. The while
loop will work well in this situation, because it will not execute even once if its condition
is false. Program 5-2 shows the code for the program.

164 Chapter 5 Repetition Structures

Program 5-2 (temperature.py)

1 # This program assists a technician in the process
2 # of checking a substance's temperature.
3
4 # MAX_TEMP is used as a global constant for
5 # the maximum temperature.
6 MAX_TEMP = 102.5
7
8 # The main function
9 def main():

10 # Get the substance's temperature.
11 temperature = float(input("Enter the substance's Celsius temperature: "))
12
13 # As long as necessary, instruct the user to
14 # adjust the thermostat.
15 while temperature > MAX_TEMP:
16 print('The temperature is too high.')
17 print('Turn the thermostat down and wait')
18 print('5 minutes. Then take the temperature')
19 print('again and enter it.')
20 temperature = float(input('Enter the new Celsius temperature: '))
21
22 # Remind the user to check the temperature again
23 # in 15 minutes.
24 print('The temperature is acceptable.')
25 print('Check it again in 15 minutes.')
26
27 # Call the main function.
28 main()

Program Output (with input shown in bold)

Enter the substance's Celsius temperature: 104.7 e
The temperature is too high.
Turn the thermostat down and wait
5 minutes. Take the temperature
again and enter it.
Enter the new Celsius temperature: 103.2 e

The temperature is too high.
Turn the thermostat down and wait
5 minutes. Take the temperature
again and enter it.
Enter the new Celsius temperature: 102.1 e

The temperature is acceptable.
Check it again in 15 minutes.

5.2 The while Loop: a Condition-Controlled Loop 165

Infinite Loops
In all but rare cases, loops must contain within themselves a way to terminate. This means
that something inside the loop must eventually make the test condition false. The loop in
Program 5-1 stops when the expression keep_going == 'y' is false. If a loop does not
have a way of stopping, it is called an infinite loop. An infinite loop continues to repeat
until the program is interrupted. Infinite loops usually occur when the programmer forgets
to write code inside the loop that makes the test condition false. In most circumstances you
should avoid writing infinite loops.

Program 5-3 demonstrates an infinite loop. This is a modified version of the commission
calculating program shown in Program 5-1. In this version, we have removed the code that
modifies the keep_going variable in the body of the loop. Each time the expression
keep_going == 'y' is tested in line 7, keep_going will reference the string ‘y’. As a con-
sequence, the loop has no way of stopping. (The only way to stop this program is to press
Ctrl+C on the keyboard to interrupt it.)

Program 5-3 (infinite.py)

1 # This program demonstrates an infinite loop.
2 def main():
3 # Create a variable to control the loop.
4 keep_going = 'y'
5
6 # Warning! Infinite loop!
7 while keep_going == 'y':
8 # Get a salesperson's sales and commission rate.
9 sales = float(input('Enter the amount of sales: '))

10 comm_rate = float(input('Enter the commission rate: '))
11
12 # Calculate the commission.
13 commission = sales * comm_rate
14
15 # Display the commission.
16 print('The commission is $', \
17 format(commission, ',.2f'), sep='')
18
19 # Call the main function.
20 main()

Program Output (with input shown in bold)

Enter the substance's Celsius temperature: 102.1 e

The temperature is acceptable.
Check it again in 15 minutes.

166 Chapter 5 Repetition Structures

Calling Functions in a Loop
Functions can be called from statements in the body of a loop. In fact, such code in a loop
often improves the design. For example, in Program 5-1, the statements that get the amount
of sales, calculate the commission, and display the commission can easily be placed in a func-
tion. That function can then be called in the loop. Program 5-4 shows how this might be done.

This program has a main function, which is called when the program runs, and a show_
commission function that handles all of the steps related to calculating and displaying a
commission. Figure 5-4 shows flowcharts for the main and show_commission functions.

Program 5-4 (commission2.py)

1 # This program calculates sales commissions.
2 def main():
3 # Create a variable to control the loop.
4 keep_going = 'y'
5
6 # Calculate a series of commissions.
7 while keep_going == 'y':
8 # Call the show_commission function to
9 # display a salesperson's commission.

10 show_commission()
11
12 # See if the user wants to do another one.
13 keep_going = input('Do you want to calculate another ' + \
14 'commission (Enter y for yes): ')
15
16 # The show_commission function gets the amount of
17 # sales and the commission rate, and then displays
18 # the amount of commission.
19 def show_commission():
20 # Get a salesperson's sales and commission rate.
21 sales = float(input('Enter the amount of sales: '))
22 comm_rate = float(input('Enter the commission rate: '))
23
24 # Calculate the commission.
25 commission = sales * comm_rate
26
27 # Display the commission.
28 print('The commission is $', \
29 format(commission, ',.2f'), sep='')
30
31 # Call the main function.
32 main()

The output of this program is the same as that of Program 5-1

5.3 The for Loop: a Count-Controlled Loop 167

Checkpoint

5.4 What is a loop iteration?

5.5 Does the while loop test its condition before or after it performs an iteration?

5.6 How many times will 'Hello World' be printed in the following program?

count = 10
while count < 1:

print('Hello World')

5.7 What is an infinite loop?

5.3 The for Loop: a Count-Controlled Loop

CONCEPT: A count-controlled loop iterates a specific number of times. In Python
you use the for statement to write a count-controlled loop.

As mentioned at the beginning of this chapter, a count-controlled loop iterates a specific
number of times. Count-controlled loops are commonly used in programs. For example,

main()

keep_going == 'y'

False

Return

True

Prompt the user: 'Do you
want to calculate another
commission? (Enter y for
yes)' and assign the input

to keep_going.

Assign 'y' to keep_going

show_commission()

commission = sales *
comm_rate

Prompt the user to enter
the amount of sales and

assign it to sales.

Prompt the user to enter
the commission rate and
assign it to comm_rate.

Display the
commission

show_commission()

Return

Figure 5-4 Flowcharts for the main and show_commission functions

VideoNote
The for Loop

168 Chapter 5 Repetition Structures

suppose a business is open six days per week, and you are going to write a program that
calculates the total sales for a week. You will need a loop that iterates exactly six times.
Each time the loop iterates, it will prompt the user to enter the sales for one day.

You use the for statement to write a count-controlled loop. In Python, the for statement
is designed to work with a sequence of data items. When the statement executes, it iterates
once for each item in the sequence. Here is the general format:

for variable in [value1, value2, etc.]:
statement
statement
etc.

We will refer to the first line as the for clause. In the for clause, variable is the name of
a variable. Inside the brackets a sequence of values appears, with a comma separating each
value. (In Python, a comma-separated sequence of data items that are enclosed in a set of
brackets is called a list. In Chapter 8 you will learn more about lists.) Beginning at the next
line is a block of statements that is executed each time the loop iterates.

The for statement executes in the following manner: The variable is assigned the first
value in the list, and then the statements that appear in the block are executed. Then,
variable is assigned the next value in the list, and the statements in the block are exe-
cuted again. This continues until variable has been assigned the last value in the list.
Program 5-5 shows a simple example that uses a for loop to display the numbers 1
through 5.

Program 5-5 (simple_loop1.py)

1 # This program demonstrates a simple for loop
2 # that uses a list of numbers.
3
4 def main():
5 print('I will display the numbers 1 through 5.')
6 for num in [1, 2, 3, 4, 5]:
7 print(num)
8
9 # Call the main function.

10 main()

Program Output

I will display the numbers 1 through 5.
1
2
3
4
5

The first time the for loop iterates, the num variable is assigned the value 1 and then the
print statement in line 7 executes (displaying the value 1). The next time the loop iterates,

5.3 The for Loop: a Count-Controlled Loop 169

num is assigned the value 2, and the print statement executes (displaying the value 2). This
process continues, as shown in Figure 5-5, until num has been assigned the last value in the
list. Because the list contains five values, the loop will iterate five times.

Python programmers commonly refer to the variable that is used in the for clause as the
target variable because it is the target of an assignment at the beginning of each loop
iteration.

Figure 5-5 The for loop

for num in [1, 2, 3, 4, 5]:
 print(num)

1st iteration:

for num in [1, 2, 3, 4, 5]:
 print(num)

2nd iteration:

for num in [1, 2, 3, 4, 5]:
 print(num)

3rd iteration:

for num in [1, 2, 3, 4, 5]:
 print(num)

4th iteration:

for num in [1, 2, 3, 4, 5]:
 print(num)

5th iteration:

The values that appear in the list do not have to be a consecutively ordered series of num-
bers. For example, Program 5-6 uses a for loop to display a list of odd numbers. There are
five numbers in the list, so the loop iterates five times.

Program 5-6 (simple_loop2.py)

1 # This program also demonstrates a simple for
2 # loop that uses a list of numbers.
3
4 def main():
5 print('I will display the odd numbers 1 through 9.')
6 for num in [1, 3, 5, 7, 9]:
7 print(num)
8
9 # Call the main function.

10 main()

(program output continues)

170 Chapter 5 Repetition Structures

Program 5-6 (continued)

Program Output

I will display the odd numbers 1 through 9.
1
3
5
7
9

Program 5-7 shows another example. In this program the for loop iterates over a list of
strings. Notice that the list (in line 5) contains the three strings ‘Winken’, ‘Blinken’, and
‘Nod’. As a result, the loop iterates three times.

Program 5-7 (simple_loop3.py)

1 # This program also demonstrates a simple for
2 # loop that uses a list of strings.
3
4 def main():
5 for name in ['Winken', 'Blinken', 'Nod']:
6 print(name)
7
8 # Call the main function.
9 main()

Program Output

Winken
Blinken
Nod

Using the range Function with the for Loop
Python provides a built-in function named range that simplifies the process of writing a count-
controlled for loop. The range function creates a type of object known as an iterable. An iter-
able is an object which is similar to a list. It contains a sequence of values that can be iterated
over with something like a loop. Here is an example of a for loop that uses the range function:

for num in range(5):
print(num)

Notice that instead of using a list of values, we call to the range function passing 5 as an argu-
ment. In this statement the range function will generate an iterable sequence of integers in the
range of 0 up to (but not including) 5. This code works the same as the following:

for num in [0, 1, 2, 3, 4]:
print(num)

5.3 The for Loop: a Count-Controlled Loop 171

As you can see, the list contains five numbers, so the loop will iterate five times. Program 5-8
uses the range function with a for loop to display “Hello world” five times.

Program 5-8 (simple_loop4.py)

1 # This program demonstrates how the range
2 # function can be used with a for loop.
3
4 def main():
5 # Print a message five times.
6 for x in range(5):
7 print('Hello world!')
8
9 # Call the main function.

10 main()

Program Output

Hello world
Hello world
Hello world
Hello world
Hello world

If you pass one argument to the range function, as demonstrated in Program 5-8, that
argument is used as the ending limit of the sequence of numbers. If you pass two arguments
to the range function, the first argument is used as the starting value of the sequence and
the second argument is used as the ending limit. Here is an example:

for num in range(1, 5):
print(num)

This code will display the following:

1
2
3
4

By default, the range function produces a sequence of numbers that increase by 1 for each
successive number in the list. If you pass a third argument to the range function, that argu-
ment is used as step value. Instead of increasing by 1, each successive number in the
sequence will increase by the step value. Here is an example:

for num in range(1, 10, 2):
print(num)

In this for statement, three arguments are passed to the range function:

• The first argument, 1, is the starting value for the sequence.
• The second argument, 10, is the ending limit of the list. This means that the last num-

ber in the sequence will be 9.

172 Chapter 5 Repetition Structures

• The third argument, 2, is the step value. This means that 2 will be added to each suc-
cessive number in the sequence.

This code will display the following:

1
3
5
7
9

Using the Target Variable Inside the Loop
In a for loop, the purpose of the target variable is to reference each item in a sequence of
items as the loop iterates. In many situations it is helpful to use the target variable in a cal-
culation or other task within the body of the loop. For example, suppose you need to write
a program that displays the numbers 1 through 10 and their squares, in a table similar to
the following:

Number Square

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

This can be accomplished by writing a for loop that iterates over the values 1 through 10.
During the first iteration, the target variable will be assigned the value 1, during the second
iteration it will be assigned the value 2, and so forth. Because the target variable will refer-
ence the values 1 through 10 during the loop’s execution, you can use it in the calculation
inside the loop. Program 5-9 shows how this is done.

Program 5-9 (squares.py)

1 # This program uses a loop to display a
2 # table showing the numbers 1 through 10
3 # and their squares.
4

5.3 The for Loop: a Count-Controlled Loop 173

5 def main():
6 # Print the table headings.
7 print('Number\tSquare')
8 print('--------------')
9

10 # Print the numbers 1 through 10
11 # and their squares.
12 for number in range(1, 11):
13 square = number**2
14 print(number, '\t', square)
15
16 # Call the main function.
17 main()

Program Output

Number Square

1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

First, take a closer look at line 7, which displays the table headings:

print('Number\tSquare')

Notice that inside the string literal the \t escape sequence between the words Number and
Square. Recall from Chapter 2 that the \t escape sequence is like pressing the Tab key; it
causes the output cursor to move over to the next tab position. This causes the spaces that
you see between the words Number and Square in the sample output.

The for loop that begins in line 12 uses the range function to produce a sequence contain-
ing the numbers 1 through 10. During the first iteration, number will reference 1, during
the second iteration number will reference 2, and so forth, up to 10. Inside the loop, the
statement in line 13 raises number to the power of 2 (recall from Chapter 2 that ** is the
exponent operator), and assigns the result to the square variable. The statement in line 14
prints the value referenced by number, tabs over, and then prints the value referenced by
square. (Tabbing over with the \t escape sequence causes the numbers to be aligned in two
columns in the output.)

Figure 5-6 shows how we might draw a flowchart for this program.

174 Chapter 5 Repetition Structures

Is there another
value in the list?

No (False)

End

Yes (True)

Start

Display Table Headings

square = number**2

Display the number
variable and the
square variable.

Assign the next value in
the list to number.

Figure 5-6 Flowchart for Program 5-9

In the Spotlight:
Designing a Count-Controlled Loop with the for Statement
Your friend Amanda just inherited a European sports car from her uncle. Amanda lives in
the United States, and she is afraid she will get a speeding ticket because the car’s speedome-
ter indicates kilometers per hour (KPH). She has asked you to write a program that displays
a table of speeds in KPH with their values converted to miles per hour (MPH). The formula
for converting KPH to MPH is:

MPH � KPH * 0.6214

In the formula, MPH is the speed in miles per hour and KPH is the speed in kilometers per hour.

The table that your program displays should show speeds from 60 KPH through 130 KPH,
in increments of 10, along with their values converted to MPH. The table should look
something like this:

5.3 The for Loop: a Count-Controlled Loop 175

KPH MPH

60 37.3

70 43.5

80 49.7

etc. . . .

130 80.8

After thinking about this table of values, you decide that you will write a for loop. The list
of values that the loop will iterate over will be the kilometer-per-hour speeds. In the loop
you will call the range function like this:

range(60, 131, 10)

The first value in the sequence will be 60. Notice that the third argument specifies 10 as the
step value. This means that the numbers in the list will be 60, 70, 80, and so forth. The sec-
ond argument specifies 131 as the sequence’s ending limit, so the last number in the
sequence will be 130.

Inside the loop you will use the target variable to calculate a speed in miles per hour.
Program 5-10 shows the program.

Program 5-10 (speed_converter.py)

1 # This program converts the speeds 60 KPH
2 # through 130 KPH (in 10 kph increments)
3 # to MPH.
4
5 # Global constants
6 START = 60
7 END = 131
8 INCREMENT = 10
9 CONVERSION_FACTOR = 0.6214

10
11 def main():
12 # Print the table headings.
13 print('KPH\tMPH')
14 print('--------------')
15
16 # Print the speeds.
17 for kph in range(START, END, INCREMENT):
18 mph = kph * CONVERSION_FACTOR
19 print(kph, '\t', format(mph, '.1f'))
20
21 # Call the main function.
22 main()

(program output continues)

176 Chapter 5 Repetition Structures

Letting the User Control the Loop Iterations
In many cases, the programmer knows the exact number of iterations that a loop must per-
form. For example, recall Program 5-9, which displays a table showing the numbers 1
through 10 and their squares. When the code was written, the programmer knew that the
loop had to iterate over the values 1 through 10.

Sometimes the programmer needs to let the user control the number of times that a loop
iterates. For example, what if you want Program 5-9 to be a bit more versatile by allowing
the user to specify the maximum value displayed by the loop? Program 5-11 shows how
you can accomplish this.

Program 5-11 (user_squares1.py)

1 # This program uses a loop to display a
2 # table of numbers and their squares.
3
4 def main():
5 # Get the ending limit.
6 print('This program displays a list of numbers')
7 print('(starting at 1) and their squares.')
8 end = int(input('How high should I go? '))
9

10 # Print the table headings.
11 print()
12 print('Number\tSquare')
13 print('--------------')
14
15 # Print the numbers and their squares.
16 for number in range(1, end + 1):
17 square = number**2
18 print(number, '\t', square)
19
20 # Call the main function.
21 main()

Program 5-10 (continued)

Program Output

KPH MPH

60 37.3
70 43.5
80 49.7
90 55.9
100 62.1
110 68.4
120 74.6
130 80.8

5.3 The for Loop: a Count-Controlled Loop 177

Program Output (with input shown in bold)

This program displays a list of numbers
(starting at 1) and their squares.
How high should I go? 5 e

Number Square

1 1
2 4
3 9
4 16
5 25

This program asks the user to enter a value that can be used as the ending limit for the list.
This value is assigned to the end variable in line 8. Then, the expression end + 1 is used
in line 16 as the second argument for the range function. (We have to add one to end because
otherwise the sequence would go up to, but not include, the value entered by the user.)

Program 5-12 shows an example that allows the user to specify both the starting value and
the ending limit of the sequence.

Program 5-12 (user_squares2.py)

1 # This program uses a loop to display a
2 # table of numbers and their squares.
3
4 def main():
5 # Get the starting value.
6 print('This program displays a list of numbers')
7 print('and their squares.')
8 start = int(input('Enter the starting number: '))
9

10 # Get the ending limit.
11 end = int(input('How high should I go? '))
12
13 # Print the table headings.
14 print()
15 print('Number\tSquare')
16 print('--------------------')
17
18 # Print the numbers and their squares.
19 for number in range(start, end + 1):
20 square = number**2
21 print(number, '\t', square)
22
23 # Call the main function.
24 main()

(program output continues)

178 Chapter 5 Repetition Structures

Program 5-12 (continued)

Program Output (with input shown in bold)

This program displays a list of numbers
and their squares.
Enter the starting number: 5 e

How high should I go? 10 e

Number Square

5 25
6 36
7 49
8 64
9 81
10 100

Generating an Iterable Sequence that Ranges
from Highest to Lowest
In the examples you have seen so far, the range function was used to generate a sequence
with numbers that go from lowest to highest. Alternatively, you can use the range function
to generate sequences of numbers that go from highest to lowest. Here is an example:

range(10, 0, -1)

In this function call, the starting value is 10, the sequence’s ending limit is 0, and the step
value is �1. This expression will produce the following sequence:

10, 9, 8, 7, 6, 5, 4, 3, 2, 1

Here is an example of a for loop that prints the numbers 5 down to 1:
for num in range(5, 0, -1):

print(num)

Checkpoint
5.8 Rewrite the following code so it calls the range function instead of using the list

[0, 1, 2, 3, 4, 5].
for x in [0, 1, 2, 3, 4, 5]:

print('I love to program!')

5.9 What will the following code display?
for number in range(6):

print(number)

5.10 What will the following code display?
for number in range(2, 6):

print(number)

5.11 What will the following code display?
for number in range(0, 501, 100):

print(number)

5.12 What will the following code display?
for number in range(10, 5, -1):

print(number)

5.4 Calculating a Running Total 179

5.4 Calculating a Running Total

CONCEPT: A running total is a sum of numbers that accumulates with each itera-
tion of a loop. The variable used to keep the running total is called an
accumulator.

Many programming tasks require you to calculate the total of a series of numbers. For
example, suppose you are writing a program that calculates a business’s total sales for a
week. The program would read the sales for each day as input and calculate the total of
those numbers.

Programs that calculate the total of a series of numbers typically use two elements:

• A loop that reads each number in the series.
• A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total of the numbers is called an accumulator. It is
often said that the loop keeps a running total because it accumulates the total as it reads each
number in the series. Figure 5-7 shows the general logic of a loop that calculates a running total.

Set accumulator to 0

Is there another
number to read?

Read the next number
Add the number to the

accumulator

Yes
(True)

No
(False)

Figure 5-7 Logic for calculating a running total

When the loop finishes, the accumulator will contain the total of the numbers that were
read by the loop. Notice that the first step in the flowchart is to set the accumulator vari-
able to 0. This is a critical step. Each time the loop reads a number, it adds it to the accu-
mulator. If the accumulator starts with any value other than 0, it will not contain the cor-
rect total when the loop finishes.

Let’s look at a program that calculates a running total. Program 5-13 allows the user to
enter five numbers, and it displays the total of the numbers entered.

180 Chapter 5 Repetition Structures

Program 5-13 (sum_numbers.py)

1 # This program calculates the sum of a series
2 # of numbers entered by the user.
3
4 # Constant for the maximum number
5 MAX = 5
6
7 def main():
8 # Initialize an accumulator variable.
9 total = 0.0

10
11 # Explain what we are doing.
12 print('This program calculates the sum of')
13 print(MAX, 'numbers you will enter.')
14
15 # Get the numbers and accumulate them.
16 for counter in range(MAX):
17 number = int(input('Enter a number: '))
18 total = total + number
19
20 # Display the total of the numbers.
21 print('The total is', total)
22
23 # Call the main function.
24 main()

Program Output (with input shown in bold)

This program calculates the sum of
5 numbers you will enter.
Enter a number: 1 e

Enter a number: 2 e

Enter a number: 3 e

Enter a number: 4 e

Enter a number: 5 e

The total is 15.0

The total variable, created by the assignment statement in line 9, is the accumulator.
Notice that it is initialized with the value 0.0. The for loop, in lines 16 through 18, does
the work of getting the numbers from the user and calculating their total. Line 17 prompts
the user to enter a number, and then assigns the input to the number variable. Then, the fol-
lowing statement in line 18 adds number to total:

total = total + number

After this statement executes, the value referenced by the number variable will be added to
the value in the total variable. It’s important that you understand how this statement
works. First, the interpreter gets the value of the expression on the right side of the =
operator, which is total + number. Then, that value is assigned by the = operator to the

5.4 Calculating a Running Total 181

total variable. The effect of the statement is that the value of the number variable is added
to the total variable. When the loop finishes, the total variable will hold the sum of all
the numbers that were added to it. This value is displayed in line 21.

The Augmented Assignment Operators
Quite often, programs have assignment statements in which the variable that is on the left
side of the = operator also appears on the right side of the = operator. Here is an example:

x = x + 1

On the right side of the assignment operator, 1 is added to x. The result is then assigned to
x, replacing the value that x previously referenced. Effectively, this statement adds 1 to x.
You saw another example of this type of statement in Program 5-14:

total = total + number

This statement assigns the value of total + number to total. As mentioned before, the
effect of this statement is that number is added to the value of total. Here is one more
example:

balance = balance - withdrawal

This statement assigns the value of the expression balance - withdrawal to balance.
The effect of this statement is that withdrawal is subtracted from balance.

Table 5-1 shows other examples of statements written this way.

These types of operations are common in programming. For convenience, Python offers a
special set of operators designed specifically for these jobs. Table 5-2 shows the augmented
assignment operators.

Table 5-1 Various assignment statements (assume x � 6 in each statement)

Statement What It Does Value of x after the Statement

x = x + 4 Add 4 to x 10

x = x - 3 Subtracts 3 from x 3

x = x * 10 Multiplies x by 10 60

x = x / 2 Divides x by 2 3
x = x % 4 Assigns the remainder of x / 4 to x 2

Table 5-2 Augmented assignment operators

Operator Example Usage Equivalent To
+= x += 5 x = x + 5

-= y -= 2 y = y - 2

*= z *= 10 z = z * 10

/= a /= b a = a / b

%= c %= 3 c = c % 3

182 Chapter 5 Repetition Structures

As you can see, the augmented assignment operators do not require the programmer to type
the variable name twice. The following statement:

total = total + number

could be rewritten as

total += number

Similarly, the statement

balance = balance – withdrawal

could be rewritten as

balance -= withdrawal;

Checkpoint

5.13 What is an accumulator?

5.14 Should an accumulator be initialized to any specific value? Why or why not?

5.15 What will the following code display?

total = 0
for count in range(1, 6):

total = total + count
print(total)

5.16 What will the following code display?

number1 = 10
number2 = 5
number1 = number1 + number2
print(number1)
print(number2)

5.17 Rewrite the following statements using augmented assignment operators:

a) quantity = quantity + 1
b) days_left = days_left - 5
c) price = price * 10
d) price = price / 2

5.5 Sentinels

CONCEPT: A sentinel is a special value that marks the end of a sequence of values.

Consider the following scenario: You are designing a program that will use a loop to
process a long sequence of values. At the time you are designing the program, you do not
know the number of values that will be in the sequence. In fact, the number of values in the
sequence could be different each time the program is executed. What is the best way to
design such a loop? Here are some techniques that you have seen already in this chapter,
along with the disadvantages of using them when processing a long list of values:

5.5 Sentinels 183

• Simply ask the user, at the end of each loop iteration, if there is another value to
process. If the sequence of values is long, however, asking this question at the end of
each loop iteration might make the program cumbersome for the user.

• Ask the user at the beginning of the program how many items are in the sequence. This
might also inconvenience the user, however. If the sequence is very long, and the user
does not know the number of items it contains, it will require the user to count them.

When processing a long sequence of values with a loop, perhaps a better technique is to use a
sentinel. A sentinel is a special value that marks the end of a sequence of items. When a program
reads the sentinel value, it knows it has reached the end of the sequence, so the loop terminates.

For example, suppose a doctor wants a program to calculate the average weight of all her
patients. The program might work like this: A loop prompts the user to enter either a
patient’s weight, or 0 if there are no more weights. When the program reads 0 as a weight,
it interprets this as a signal that there are no more weights. The loop ends and the program
displays the average weight.

A sentinel value must be distinctive enough that it will not be mistaken as a regular value
in the sequence. In the example cited above, the doctor (or her medical assistant) enters 0
to signal the end of the sequence of weights. Because no patient’s weight will be 0, this is a
good value to use as a sentinel.

In the Spotlight:
Using a Sentinel
The county tax office calculates the annual taxes on property using the following formula:

property tax � property value � 0.0065

Every day, a clerk in the tax office gets a list of properties and has to calculate the tax for
each property on the list. You have been asked to design a program that the clerk can use
to perform these calculations.

In your interview with the tax clerk, you learn that each property is assigned a lot number,
and all lot numbers are 1 or greater. You decide to write a loop that uses the number 0 as
a sentinel value. During each loop iteration, the program will ask the clerk to enter either
a property’s lot number, or 0 to end. The code for the program is shown in Program 5-15.

Program 5-14 (property_tax.py)

1 # This program displays property taxes.
2
3 # TAX_FACTOR is used as a global constant
4 # for the tax factor.
5 TAX_FACTOR = 0.0065
6
7 # The main function.
8 def main():

(program continues)

Program 5-14 (continued)

9 # Get the first lot number.
10 print('Enter the property lot number')
11 print('or enter 0 to end.')
12 lot = int(input('Lot number: '))
13
14 # Continue processing as long as the user
15 # does not enter lot number 0.
16 while lot != 0:
17 # Show the tax for the property.
18 show_tax()
19
20 # Get the next lot number.
21 print('Enter the next lot number or')
22 print('enter 0 to end.')
23 lot = int(input('Lot number: '))
24
25 # The show_tax function gets a property's
26 # value and displays its tax.
27 def show_tax():
28 # Get the property value.
29 value = float(input('Enter the property value: '))
30
31 # Calculate the property's tax.
32 tax = value * TAX_FACTOR
33
34 # Display the tax.
35 print('Property tax: $', format(tax, ',.2f'), sep='')
36
37 # Call the main function.
38 main()

Program Output (with input shown in bold)

Enter the property lot number
or enter 0 to end.
Lot number: 100 e

Enter the property value: 100000.00 e

Property tax: $650.00.
Enter the next lot number or
enter 0 to end.
Lot number: 200 e

Enter the property value: 5000.00 e

Property tax: $32.50.
Enter the next lot number or
enter 0 to end.
Lot number: 0 e

184 Chapter 5 Repetition Structures

5.6 Input Validation Loops 185

Checkpoint

5.18 What is a sentinel?

5.19 Why should you take care to choose a distinctive value as a sentinel?

5.6 Input Validation Loops

CONCEPT: Input validation is the process of inspecting data that has been input to
a program, to make sure it is valid before it is used in a computation.
Input validation is commonly done with a loop that iterates as long as an
input variable references bad data.

One of the most famous sayings among computer programmers is “garbage in, garbage
out.” This saying, sometimes abbreviated as GIGO, refers to the fact that computers can-
not tell the difference between good data and bad data. If a user provides bad data as input
to a program, the program will process that bad data and, as a result, will produce bad data
as output. For example, look at the payroll program in Program 5-15 and notice what hap-
pens in the sample run when the user gives bad data as input.

Program 5-15 (gross_pay.py)

1 # This program displays gross pay.
2 def main():
3 # Get the number of hours worked.
4 hours = int(input('Enter the hours worked this week: '))
5
6 # Get the hourly pay rate.
7 pay_rate = float(input('Enter the hourly pay rate: '))
8
9 # Calculate the gross pay.

10 gross_pay = hours * pay_rate
11
12 # Display the gross pay.
13 print('Gross pay: $', format(gross_pay, ',.2f'))
14
15 # Call the main function.
16 main()

Program Output (with input shown in bold)

Enter the hours worked this week: 400 e

Enter the hourly pay rate: 20 e

The gross pay is $8,000.00

Did you spot the bad data that was provided as input? The person receiving the paycheck
will be pleasantly surprised, because in the sample run the payroll clerk entered 400 as the

186 Chapter 5 Repetition Structures

number of hours worked. The clerk probably meant to enter 40, because there are not 400
hours in a week. The computer, however, is unaware of this fact, and the program processed
the bad data just as if it were good data. Can you think of other types of input that can be
given to this program that will result in bad output? One example is a negative number
entered for the hours worked; another is an invalid hourly pay rate.

Sometimes stories are reported in the news about computer errors that mistakenly cause
people to be charged thousands of dollars for small purchases or to receive large tax refunds
that they were not entitled to. These “computer errors” are rarely caused by the computer,
however; they are more commonly caused by bad data that was read into a program as
input.

The integrity of a program’s output is only as good as the integrity of its input. For this rea-
son, you should design your programs in such a way that bad input is never accepted. When
input is given to a program, it should be inspected before it is processed. If the input is
invalid, the program should discard it and prompt the user to enter the correct data. This
process is known as input validation.

Figure 5-8 shows a common technique for validating an item of input. In this technique,
the input is read, and then a loop is executed. If the input data is bad, the loop executes its
block of statements. The loop displays an error message so the user will know that the input
was invalid, and then it reads the new input. The loop repeats as long as the input is bad.

Get input

Is the input bad? Get the input againDisplay an
error message

Yes
(True)

No
(False)

Figure 5-8 Logic containing an input validation loop

Notice that the flowchart in Figure 5-8 reads input in two places: first just before the
loop and then inside the loop. The first input operation—just before the loop—is called
a priming read, and its purpose is to get the first input value that will be tested by
the validation loop. If that value is invalid, the loop will perform subsequent input
operations.

5.6 Input Validation Loops 187

Let’s consider an example. Suppose you are designing a program that reads a test score and
you want to make sure the user does not enter a value less than 0. The following code shows
how you can use an input validation loop to reject any input value that is less than 0.

Get a test score.
score = int(input('Enter a test score: '))

Make sure it is not less than 0.
while score < 0:

print('ERROR: The score cannot be negative.')
score = int(input('Enter the correct score: '))

This code first prompts the user to enter a test score (this is the priming read), and then the
while loop executes. Recall that the while loop is a pretest loop, which means it tests the
expression score < 0 before performing an iteration. If the user entered a valid test score,
this expression will be false and the loop will not iterate. If the test score is invalid, however,
the expression will be true and the loop’s block of statements will execute. The loop dis-
plays an error message and prompts the user to enter the correct test score. The loop will
continue to iterate until the user enters a valid test score.

NOTE: An input validation loop is sometimes called an error trap or an error handler.

In the Spotlight:
Writing an Input Validation Loop
Samantha owns an import business and she calculates the retail prices of her products with
the following formula:

retail price � wholesale cost � 2.5

She currently uses the program shown in Program 5-16 to calculate retail prices.

This code rejects only negative test scores. What if you also want to reject any test scores
that are greater than 100? You can modify the input validation loop so it uses a compound
Boolean expression, as shown next.

Get a test score.
score = int(input('Enter a test score: '))

Make sure it is not less than 0 or greater than 100.
while score < 0 or score > 100:

print('ERROR: The score cannot be negative')
print('or greater than 100.')
score = int(input('Enter the correct score: '))

The loop in this code determines whether score is less than 0 or greater than 100. If either
is true, an error message is displayed and the user is prompted to enter a correct score.

188 Chapter 5 Repetition Structures

Program 5-16 (retail_no_validation.py)

1 # This program calculates retail prices.
2
3 # MARK_UP is used as a global constant for
4 # the markup up percentage.
5 MARK_UP = 2.5
6
7 # The main function
8 def main():
9 # Variable to control the loop.

10 another = 'y'
11
12 # Process one or more items.
13 while another == 'y' or another == 'Y':
14 # Display an item's retail price.
15 show_retail()
16
17 # Do this again?
18 another = input('Do you have another item? ' + \
19 '(Enter y for yes): ')
20
21 # The show_retail function gets an item's wholesale
22 # cost and displays the item's retail price.
23 def show_retail():
24 # Get the item's wholesale cost.
25 wholesale = float(input("Enter the item's " + \
26 "wholesale cost: "))
27
28 # Calculate the retail price.
29 retail = wholesale * MARK_UP
30
31 # Display the retail price.
32 print('Retail price: $', format(retail, ',.2f'))
33
34 # Call the main function.
35 main()

Program Output (with input shown in bold)

Enter the item's wholesale cost: 10.00 e

Retail price: $25.00.
Do you have another item? (Enter y for yes): y e

Enter the item's wholesale cost: 15.00 e

Retail price: $37.50.
Do you have another item? (Enter y for yes): y e

Enter the item's wholesale cost: 12.50 e

Retail price: $31.25.
Do you have another item? (Enter y for yes): n e

5.6 Input Validation Loops 189

Samantha has encountered a problem when using the program, however. Some of the items
that she sells have a wholesale cost of 50 cents, which she enters into the program as 0.50.
Because the 0 key is next to the key for the negative sign, she sometimes accidentally enters
a negative number. She has asked you to modify the program so it will not allow a nega-
tive number to be entered for the wholesale cost.

You decide to add an input validation loop to the show_retail function that rejects any
negative numbers that are entered into the wholesale variable. Program 5-17 shows the
revised program, with the new input validation code shown in lines 28 through 32.

Program 5-17 (retail_with_validation.py)

1 # This program calculates retail prices.
2
3 # MARK_UP is used as a global constant for
4 # the markup up percentage.
5 MARK_UP = 2.5
6
7 # The main function
8 def main():
9 # Variable to control the loop.

10 another = 'y'
11
12 # Process one or more items.
13 while another == 'y' or another == 'Y':
14 # Display an item's retail price.
15 show_retail()
16
17 # Do this again?
18 another = input('Do you have another item? ' + \
19 '(Enter y for yes): ')
20
21 # The show_retail function gets an item's wholesale
22 # cost and displays the item's retail price.
23 def show_retail():
24 # Get the item's wholesale cost.
25 wholesale = float(input("Enter the item's " + \
26 "wholesale cost: "))
27
28 # Validate the wholesale cost.
29 while wholesale < 0:
30 print('ERROR: the cost cannot be negative.')
31 wholesale = float(input('Enter the correct ' + \
32 'wholesale cost:'))
33
34 # Calculate the retail price.
35 retail = wholesale * MARK_UP
36
37 # Display the retail price.

(program continues)

190 Chapter 5 Repetition Structures

Checkpoint

5.20 What does the phrase “garbage in, garbage out” mean?
5.21 Give a general description of the input validation process.
5.22 Describe the steps that are generally taken when an input validation loop is used

to validate data.
5.23 What is a priming read? What is its purpose?
5.24 If the input that is read by the priming read is valid, how many times will the

input validation loop iterate?

5.7 Nested Loops

CONCEPT: A loop that is inside another loop is called a nested loop.

A nested loop is a loop that is inside another loop. A clock is a good example of something
that works like a nested loop. The second hand, minute hand, and hour hand all spin
around the face of the clock. The hour hand, however, only makes 1 revolution for every
12 of the minute hand’s revolutions. And it takes 60 revolutions of the second hand for the
minute hand to make 1 revolution. This means that for every complete revolution of the
hour hand, the second hand has revolved 720 times. Here is a loop that partially simulates
a digital clock. It displays the seconds from 0 to 59:

for seconds in range(60):
print(seconds)

We can add a minutes variable and nest the loop above inside another loop that cycles
through 60 minutes:

for minutes in range(60):
for seconds in range(60):

print(minutes, ':', seconds)

To make the simulated clock complete, another variable and loop can be added to count the hours:

for hours in range(24):
for minutes in range(60):

for seconds in range(60):
print(hours, ':', minutes, ':', seconds)

Program 5-17 (continued)

38 print('Retail price: $', format(retail, ',.2f'))
39
40 # Call the main function.
41 main()

Program Output (with input shown in bold)

Enter the item's wholesale cost: –.50 e

ERROR: the cost cannot be negative.
Enter the correct wholesale cost: 0.50 e

Retail price: $1.25.
Do you have another item? (Enter y for yes): n e

5.7 Nested Loops 191

This code’s output would be:

0:0:0
0:0:1
0:0:2

(The program will count through each second of 24 hours.)

23:59:59

The innermost loop will iterate 60 times for each iteration of the middle loop. The middle
loop will iterate 60 times for each iteration of the outermost loop. When the outermost loop
has iterated 24 times, the middle loop will have iterated 1,440 times and the innermost loop
will have iterated 86,400 times! Figure 5-9 shows a flowchart for the complete clock sim-
ulation program previously shown.

End

Is there another
value in the
seconds list?

Assign the next value
in the minutes list to
the minute variable.

Yes (True)

print(hours, ':',
minutes, ':', seconds)

Is there another
value in the
minutes list?

Assign the next value in
the hours list to the

hour variable.

Yes (True)

Is there another
value in the hours

list?

Yes (True)

Assign the next value in
the seconds list to the

second variable.
No (False)

No (False)

No (False)

Start

Figure 5-9 Flowchart for a clock simulator

192 Chapter 5 Repetition Structures

The simulated clock example brings up a few points about nested loops:

• An inner loop goes through all of its iterations for every single iteration of an outer
loop.

• Inner loops complete their iterations faster than outer loops.
• To get the total number of iterations of a nested loop, multiply the number of itera-

tions of all the loops.

Program 5-18 shows another example. It is a program that a teacher might use to get the
average of each student’s test scores. The statement in line 5 asks the user for the number
of students, and the statement in line 8 asks the user for the number of test scores per stu-
dent. The for loop that begins in line 11 iterates once for each student. The nested inner
loop, in lines 17 through 21, iterates once for each test score.

Program 5-18 (test_score_averages.py)

1 # This program averages test scores. It asks the user for the
2 # number of students and the number of test scores per student.
3
4 # Get the number of students.
5 num_students = int(input('How many students do you have? '))
6
7 # Get the number of test scores per student.
8 num_test_scores = int(input('How many test scores per student? '))
9

10 # Determine each students average test score.
11 for student in range(num_students):
12 # Initialize an accumulator for test scores.
13 total = 0.0
14 # Get a student's test scores.
15 print('Student number', student + 1)
16 print('-----------------')
17 for test_num in range(num_test_scores):
18 print('Test number', test_num + 1, end='')
19 score = float(input(': '))
20 # Add the score to the accumulator.
21 total += score
22
23 # Calculate the average test score for this student.
24 average = total / num_test_scores
25
26 # Display the average.
27 print('The average for student number', student + 1, \
28 'is:', average)
29 print()

Program Output (with input shown in bold)

How many students do you have? 3 e

How many test scores per student? 3 e

Student number 1

Test number 1: 100 e

Test number 2: 95 e

Test number 3: 90 e

The average for student number 1 is: 95.0

Student number 2

Test number 1: 80 e

Test number 2: 81 e

Test number 3: 82 e

The average for student number 2 is: 81.0

Student number 3

Test number 1: 75 e

Test number 2: 85 e

Test number 3: 80 e

The average for student number 3 is: 80.0

In the Spotlight:
Using Nested Loops to Print Patterns
One interesting way to learn about nested loops is to use them to display patterns on the
screen. Let's look at a simple example. Suppose we want to print asterisks on the screen in
the following rectangular pattern:

If you think of this pattern as having rows and columns, you can see that it has eight rows, and
each row has six columns. The following code can be used to display one row of asterisks:

for col in range(6):
print('*', end='')

If we run this code in a program or in interactive mode, it produces the following output:

5.7 Nested Loops 193

194 Chapter 5 Repetition Structures

To complete the entire pattern, we need to execute this loop eight times. We can place the
loop inside another loop that iterates eight times, as shown here:

1 for row in range(8):
2 for col in range(6):
3 print('*', end='')
4 print()

The outer loop iterates eight times. Each time it iterates, the inner loop iterates 6 times.
(Notice that in line 4, after each row has been printed, we call the print() function. We
have to do that to advance the screen cursor to the next line at the end of each row.
Without that statement, all the asterisks will be printed in one long row on the screen.)

We could easily write a program that prompts the user for the number of rows and
columns, as shown in Program 5-19.

Program 5-19 (rectangluar_pattern.py)

1 # This program displays a rectangular pattern
2 # of asterisks.
3 rows = int(input('How many rows? '))
4 cols = int(input('How many columns? '))
5
6 for r in range(rows):
7 for c in range(cols):
8 print('*', end='')
9 print()

Program Output (with input shown in bold)

How many rows? 5 e
How many columns? 10 e

Let’s look at another example. Suppose you want to print asterisks in a pattern that looks
like the following triangle:

*
**

Once again, think of the pattern as being arranged in rows and columns. The pattern has
a total of eight rows. In the first row, there is one column. In the second row, there are two

columns. In the third row, there are three columns. This continues to the eighth row, which
has eight columns. Program 5-20 shows the code that produces this pattern.

Program 5-20 (triangle_pattern.py)

1 # This program displays a triangle pattern.
2 BASE_SIZE = 8
3
4 for r in range(BASE_SIZE):
5 for c in range(r + 1):
6 print('*', end='')
7 print()

Program Output

*
**

First, let’s look at the outer loop. In line 4, the expression range(BASE_SIZE) produces an
iterable containing the following sequence of integers:

0, 1, 2, 3, 4, 5, 6, 7

As a result, the variable r is assigned the values 0 through 7 as the outer loop iterates. The inner
loop’s range expression, in line 5, is range(r + 1). The inner loop executes as follows:

• During the outer loop’s first iteration, the variable r is assigned 0. The expression
range(r + 1) causes the inner loop to iterate one time, printing one asterisk.

• During the outer loop’s second iteration, the variable r is assigned 1. The expression
range(r + 1) causes the inner loop to iterate two times, printing two asterisks.

• During the outer loop’s third iteration, the variable r is assigned 2. The expression
range(r + 1) causes the inner loop to iterate three times, printing three asterisks,
and so forth.

Let’s look at another example. Suppose you want to display the following stair-step
pattern:

#
#
#
#
#
#

5.7 Nested Loops 195

The pattern has six rows. In general, we can describe each row as having some number of
spaces followed by a # character. Here’s a row-by-row description:

First row: 0 spaces followed by a # character.
Second row: 1 space followed by a # character.
Third row: 2 spaces followed by a # character.
Fourth row: 3 spaces followed by a # character.
Fifth row: 4 spaces followed by a # character.
Sixth row: 5 spaces followed by a # character.

To display this pattern, we can write code containing a pair of nested loops that work in
the following manner:

• The outer loop will iterate six times. Each iteration will perform the following:
• The inner loop will display the correct number of spaces, side by side.
• Then, a # character will be displayed.

Program 5-21 shows the Python code.

Program 5-21 (stair_step_pattern.py)

1 # This program displays a stair-step pattern.
2 NUM_STEPS = 6
3
4 for r in range(NUM_STEPS):
5 for c in range(r):
6 print(' ', end='')
7 print('#')

Program Output

#
#
#
#
#
#

In line 1, the expression range(NUM_STEPS) produces an iterable containing the following
sequence of integers:

0, 1, 2, 3, 4, 5

As a result, the outer loop iterates 6 times. As the outer loop iterates, variable r is assigned
the values 0 through 5. The inner loop executes as follows:

• During the outer loop’s first iteration, the variable r is assigned 0. A loop that is writ-
ten as for c in range(0): iterates zero times, so the inner loop does not execute
at this time.

• During the outer loop’s second iteration, the variable r is assigned 1. A loop that is
written as for c in range(1): iterates one time, so the inner loop iterates once,
printing one space.

• During the outer loop’s third iteration, the variable r is assigned 2. A loop that is writ-
ten as for c in range(2): will iterate two times, so the inner loop iterates twice,
printing two spaces, and so forth.

196 Chapter 5 Repetition Structures

Review Questions
Multiple Choice

1. A __________ -controlled loop uses a true/false condition to control the number of
times that it repeats.
a. Boolean
b. condition
c. decision
d. count

2. A __________ -controlled loop repeats a specific number of times.
a. Boolean
b. condition
c. decision
d. count

3. Each repetition of a loop is known as a(n) __________.
a. cycle
b. revolution
c. orbit
d. iteration

4. The while loop is a __________ type of loop.
a. pretest
b. no-test
c. prequalified
d. post-iterative

5. A(n) __________ loop has no way of ending and repeats until the program is interrupted.
a. indeterminate
b. interminable
c. infinite
d. timeless

6. The -= operator is an example of a(n) __________ operator.
a. relational
b. augmented assignment
c. complex assignment
d. reverse assignment

7. A(n) __________ variable keeps a running total.
a. sentinel
b. sum
c. total
d. accumulator

8. A(n) __________ is a special value that signals when there are no more items from a
list of items to be processed. This value cannot be mistaken as an item from the list.
a. sentinel
b. flag
c. signal
d. accumulator

Review Questions 197

198 Chapter 5 Repetition Structures

9. GIGO stands for
a. great input, great output
b. garbage in, garbage out
c. GIGahertz Output
d. GIGabyte Operation

10. The integrity of a program’s output is only as good as the integrity of the program’s
a. compiler
b. programming language
c. input
d. debugger

11. The input operation that appears just before a validation loop is known as the
a. prevalidation read
b. primordial read
c. initialization read
d. priming read

12. Validation loops are also known as
a. error traps
b. doomsday loops
c. error avoidance loops
d. defensive loops

True or False

1. A condition-controlled loop always repeats a specific number of times.

2. The while loop is a pretest loop.

3. The following statement subtracts 1 from x: x = x - 1

4. It is not necessary to initialize accumulator variables.

5. In a nested loop, the inner loop goes through all of its iterations for every single itera-
tion of the outer loop.

6. To calculate the total number of iterations of a nested loop, add the number of itera-
tions of all the loops.

7. The process of input validation works as follows: when the user of a program enters
invalid data, the program should ask the user “Are you sure you meant to enter that?”
If the user answers “yes,” the program should accept the data.

Short Answer

1. What is a condition-controlled loop?

2. What is a count-controlled loop?

3. What is an infinite loop? Write the code for an infinite loop.

4. Why is it critical that accumulator variables are properly initialized?

5. What is the advantage of using a sentinel?

6. Why must the value chosen for use as a sentinel be carefully selected?

7. What does the phrase “garbage in, garbage out” mean?

8. Give a general description of the input validation process.

Programming Exercises 199

Algorithm Workbench

1. Write a while loop that lets the user enter a number. The number should be multiplied
by 10, and the result assigned to a variable named product. The loop should iterate as
long as product is less than 100.

2. Write a while loop that asks the user to enter two numbers. The numbers should be
added and the sum displayed. The loop should ask the user if he or she wishes to per-
form the operation again. If so, the loop should repeat, otherwise it should terminate.

3. Write a for loop that displays the following set of numbers:

0, 10, 20, 30, 40, 50 . . . 1000

4. Write a loop that asks the user to enter a number. The loop should iterate 10 times and
keep a running total of the numbers entered.

5. Write a loop that calculates the total of the following series of numbers:

6. Rewrite the following statements using augmented assignment operators.
a. x = x + 1
b. x = x * 2
c. x = x / 10
d. x = x - 100

7. Write a set of nested loops that display 10 rows of # characters. There should be
15 # characters in each row.

8. Write code that prompts the user to enter a positive nonzero number and validates the
input.

9. Write code that prompts the user to enter a number in the range of 1 through 100 and
validates the input.

Programming Exercises
1. Bug Collector

A bug collector collects bugs every day for seven days. Write a program that keeps a run-
ning total of the number of bugs collected during the seven days. The loop should ask for
the number of bugs collected for each day, and when the loop is finished, the program
should display the total number of bugs collected.

2. Calories Burned

Running on a particular treadmill you burn 3.9 calories per minute. Write a program
that uses a loop to display the number of calories burned after 10, 15, 20, 25, and 30
minutes.

3. Budget Analysis

Write a program that asks the user to enter the amount that he or she has budgeted for a
month. A loop should then prompt the user to enter each of his or her expenses for the
month, and keep a running total. When the loop finishes, the program should display the
amount that the user is over or under budget.

1
30

+ 2
29

+ 3
28

+ …
30
1

VideoNote
The Bug Collector
Problem

200 Chapter 5 Repetition Structures

4. Distance Traveled

The distance a vehicle travels can be calculated as follows:

distance � speed � time

For example, if a train travels 40 miles per hour for three hours, the distance traveled is 120
miles. Write a program that asks the user for the speed of a vehicle (in miles per hour) and
the number of hours it has traveled. It should then use a loop to display the distance the
vehicle has traveled for each hour of that time period. Here is an example of the desired
output:

What is the speed of the vehicle in mph? 40 e

How many hours has it traveled? 3 e

Hour Distance Traveled
1 40
2 80
3 120

5. Average Rainfall

Write a program that uses nested loops to collect data and calculate the average rain-
fall over a period of years. The program should first ask for the number of years. The
outer loop will iterate once for each year. The inner loop will iterate twelve times, once
for each month. Each iteration of the inner loop will ask the user for the inches of rain-
fall for that month. After all iterations, the program should display the number of
months, the total inches of rainfall, and the average rainfall per month for the entire
period.

6. Celsius to Fahrenheit Table

Write a program that displays a table of the Celsius temperatures 0 through 20 and their
Fahrenheit equivalents. The formula for converting a temperature from Celsius to
Fahrenheit is

where F is the Fahrenheit temperature and C is the Celsius temperature. Your program
must use a loop to display the table.

7. Pennies for Pay

Write a program that calculates the amount of money a person would earn over a period
of time if his or her salary is one penny the first day, two pennies the second day, and
continues to double each day. The program should ask the user for the number of days.
Display a table showing what the salary was for each day, and then show the total pay at
the end of the period. The output should be displayed in a dollar amount, not the number
of pennies.

8. Sum of Numbers

Write a program with a loop that asks the user to enter a series of positive numbers. The
user should enter a negative number to signal the end of the series. After all the positive
numbers have been entered, the program should display their sum.

F = 9
5

 C + 32

9. Write a program that uses nested loops to draw this pattern:

**
*

10. Write a program that uses nested loops to draw this pattern:

##
#
#
#
#
#

Programming Exercises 201

This page intentionally left blank

6.1 Introduction to Value-Returning Functions:
Generating Random Numbers

CONCEPT: A value-returning function is a function that returns a value back to the
part of the program that called it. Python, as well as most other pro-
gramming languages, provides a library of prewritten functions that per-
form commonly needed tasks. These libraries typically contain a function
that generates random numbers.

In Chapter 3 you learned about simple functions. A simple function is a group of statements
that exist within a program for the purpose of performing a specific task. When you need
the function to perform its task, you call the function. This causes the statements inside the
function to execute. When the function is finished, control of the program returns to the
statement appearing immediately after the function call.

A value-returning function is a special type of function. It is like a simple function in the
following ways.

• It is a group of statements that perform a specific task.
• When you want to execute the function, you call it.

When a value-returning function finishes, however, it returns a value back to the part of the
program that called it. The value that is returned from a function can be used like any other
value: it can be assigned to a variable, displayed on the screen, used in a mathematical
expression (if it is a number), and so on.

Value-Returning Functions
and Modules6

TOPICS

C
H

A
P

T
E

R

203

6.1 Introduction to Value-Returning
Functions: Generating Random
Numbers

6.2 Writing Your Own Value-Returning
Functions

6.3 The math Module
6.4 Storing Functions in Modules

204 Chapter 6 Value-Returning Functions and Modules

Standard Library Functions and the import Statement
Python, as well as most other programming languages, comes with a standard library of
functions that have already been written for you. These functions, known as library func-
tions, make a programmer’s job easier because they perform many of the tasks that pro-
grammers commonly need to perform. In fact, you have already used several of Python’s
library functions. Some of the functions that you have used are print, input, and range.
Python has many other library functions. Although we won’t cover them all in this book,
we will discuss library functions that perform fundamental operations.

Some of Python’s library functions are built into the Python interpreter. If you want to use
one of these built-in functions in a program, you simply call the function. This is the case
with the print, input, range, and other functions that you have already learned about.
Many of the functions in the standard library, however, are stored in files that are known
as modules. These modules, which are copied to your computer when you install Python,
help organize the standard library functions. For example, functions for performing math
operations are stored together in a module, functions for working with files are stored
together in another module, and so on.

In order to call a function that is stored in a module, you have to write an import state-
ment at the top of your program. An import statement tells the interpreter the name of the
module that contains the function. For example, one of the Python standard modules is
named math. The math module contains various mathematical functions that work with
floating-point numbers. If you want to use any of the math module’s functions in a pro-
gram, you should write the following import statement at the top of the program:

import math

This statement causes the interpreter to load the contents of the math module into memory
and makes all the functions in the math module available to the program.

Because you do not see the internal workings of library functions, many programmers think
of them as black boxes. The term “black box” is used to describe any mechanism that
accepts input, performs some operation (that cannot be seen) using the input, and produces
output. Figure 6-1 illustrates this idea.

Library
Function

Input Output

Figure 6-1 A library function viewed as a black box

This section demonstrates how functions work by looking at standard library functions
that generate random numbers, and some interesting programs that can be written with
them. Then you will learn to write your own value-returning functions and how to create
your own modules. The last section in this chapter comes back to the topic of library func-
tions and looks at several other useful functions in the Python standard library.

Generating Random Numbers
Random numbers are useful for lots of different programming tasks. The following are just
a few examples.

6.1 Introduction to Value-Returning Functions: Generating Random Numbers 205

• Random numbers are commonly used in games. For example, computer games that
let the player roll dice use random numbers to represent the values of the dice.
Programs that show cards being drawn from a shuffled deck use random numbers to
represent the face values of the cards.

• Random numbers are useful in simulation programs. In some simulations, the com-
puter must randomly decide how a person, animal, insect, or other living being will
behave. Formulas can be constructed in which a random number is used to determine
various actions and events that take place in the program.

• Random numbers are useful in statistical programs that must randomly select data for
analysis.

• Random numbers are commonly used in computer security to encrypt sensitive data.

Python provides several library functions for working with random numbers. These func-
tions are stored in a module named random in the standard library. To use any of these
functions you first need to write this import statement at the top of your program:

import random

This statement causes the interpreter to load the contents of the random module into
memory. This makes all of the functions in the random module available to your program.1

The first random-number generating function that we will discuss is named randint.
Because the randint function is in the random module, we will need to use dot notation to
refer to it in our program. In dot notation, the function’s name is random.randint. On the
left side of the dot (period) is the name of the module, and on the right side of the dot is
the name of the function.

The following statement shows an example of how you might call the randint function.

number = random.randint(1, 100)

The part of the statement that reads random.randint(1, 100) is a call to the randint
function. Notice that two arguments appear inside the parentheses: 1 and 100. These argu-
ments tell the function to give an integer random number in the range of 1 through 100. (The
values 1 and 100 are included in the range.) Figure 6-2 illustrates this part of the statement.

1There are several ways to write an import statement in Python, and each variation works a little differently.
Many Python programmers agree that the preferred way to import a module is the way shown in this book.

number = random.randint(1, 100)

Arguments

Function call

Figure 6-2 A statement that calls the random function

Notice that the call to the randint function appears on the right side of an = operator.
When the function is called, it will generate a random number in the range of 1 through 100
and then return that number. The number that is returned will be assigned to the number
variable, as shown in Figure 6-3.

206 Chapter 6 Value-Returning Functions and Modules

Program 6-1 shows a complete program that uses the randint function. The statement
in line 2 generates a random number in the range of 1 through 10 and assigns it to the
number variable. (The program output shows that the number 7 was generated, but
this value is arbitrary. If this were an actual program, it could display any number from
1 to 10.)

Program 6-1 (random_numbers.py)

1 # This program displays a random number
2 # in the range of 1 through 10.
3 import random
4
5 def main():
6 # Get a random number.
7 number = random.randint(1, 10)
8 # Display the number.
9 print('The number is', number)
10
11 # Call the main function.
12 main()

Program Output

The number is 7

Program 6-2 shows another example. This program uses a for loop that iterates five times.
Inside the loop, the statement in line 8 calls the randint function to generate a random
number in the range of 1 through 100.

Program 6-2 (random_numbers2.py)

1 # This program displays five random
2 # numbers in the range of 1 through 100.
3 import random
4
5 def main():
6 for count in range(5):
7 # Get a random number.
8 number = random.randint(1, 100)

number = random.randint(1, 100)

A random number in the range of
1 through 100 will be assigned to

the number variable.

Some number

Figure 6-3 The random function returns a value

6.1 Introduction to Value-Returning Functions: Generating Random Numbers 207

9 # Display the number.
10 print(number)
11
12 # Call the main function.
13 main()

Program Output

89
7
16
41
12

Both Programs 6-1 and 6-2 call the randint function and assign its return value to the
number variable. If you just want to display a random number, it is not necessary to assign
the random number to a variable. You can send the random function’s return value directly
to the print function, as shown here:

print(random.randint(1, 10))

When this statement executes, the randint function is called. The function generates a ran-
dom number in the range of 1 through 10. That value is returned and then sent to the
print function. As a result, a random number in the range of 1 through 10 will be dis-
played. Figure 6-4 illustrates this.

A random number in the range of
1 through 10 will be displayed.

print(random.randint(1, 10))

Some number

Figure 6-4 Displaying a random number

Program 6-3 shows how you could simplify Program 6-2. This program also displays five
random numbers, but this program does not use a variable to hold those numbers. The
randint function’s return value is sent directly to the print function in line 7.

Program 6-3 (random_numbers3.py)

1 # This program displays five random
2 # numbers in the range of 1 through 100.
3 import random
4
5 def main():
6 for count in range(5):
7 print(random.randint(1, 100))
8
9 # Call the main function.
10 main()

(program output continues)

208 Chapter 6 Value-Returning Functions and Modules

In the Spotlight:
Using Random Numbers
Dr. Kimura teaches an introductory statistics class, and has asked you to write a program
that he can use in class to simulate the rolling of dice. The program should randomly gen-
erate two numbers in the range of 1 through 6 and display them. In your interview with Dr.
Kimura, you learn that he would like to use the program to simulate several rolls of the
dice, one after the other. Here is the pseudocode for the program:

While the user wants to roll the dice:
Display a random number in the range of 1 through 6
Display another random number in the range of 1 through 6
Ask the user if he or she wants to roll the dice again

Program 6-3 (continued)

Program Output

89
7
16
41
12

Experimenting with Random Numbers in Interactive Mode
To get a feel for the way the randint function works with different arguments, you might
want to experiment with it in interactive mode. To demonstrate, look at the following inter-
active session. (We have added line numbers for easier reference.)

1 >>> import random e

2 >>> random.randint(1, 10) e

3 5
4 >>> random.randint(1, 100) e

5 98
6 >>> random.randint(100, 200) e

7 181
8 >>>

Let’s take a closer look at each line in the interactive session:

• The statement in line 1 imports the random module. (You have to write the appropri-
ate import statements in interactive mode, too.)

• The statement in line 2 calls the randint function, passing 1 and 10 as arguments.
As a result the function returns a random number in the range of 1 through 10. The
number that is returned from the function is displayed in line 3.

• The statement in line 4 calls the randint function, passing 1 and 100 as arguments.
As a result the function returns a random number in the range of 1 through 100. The
number that is returned from the function is displayed in line 5.

• The statement in line 6 calls the randint function, passing 100 and 200 as argu-
ments. As a result the function returns a random number in the range of 100 through
200. The number that is returned from the function is displayed in line 7.

You will write a while loop that simulates one roll of the dice, and then asks the user if
another roll should be performed. As long as the user answers “y” for yes, the loop will
repeat. Program 6-4 shows the program.

Program 6-4 (dice.py)

1 # This program the rolling of dice.
2 import random
3
4 # Constants for the minimum and maximum random numbers
5 MIN = 1
6 MAX = 6
7
8 def main():
9 # Create a variable to control the loop.

10 again = 'y'
11
12 # Simulate rolling the dice.
13 while again == 'y' or again == 'Y':
14 print('Rolling the dice...')
15 print('Their values are:')
16 print(random.randint(MIN, MAX))
17 print(random.randint(MIN, MAX))
18
19 # Do another roll of the dice?
20 again = input('Roll them again? (y = yes): ')
21
22 # Call the main function.
23 main()

Program Output (with input shown in bold)

Rolling the dice...
Their values are:
3
1
Roll them again? (y = yes): y e

Rolling the dice...
Their values are:
1
1
Roll them again? (y = yes): y e

Rolling the dice...
Their values are:
5
6
Roll them again? (y = yes): y e

6.1 Introduction to Value-Returning Functions: Generating Random Numbers 209

210 Chapter 6 Value-Returning Functions and Modules

The randint function returns an integer value, so you can write a call to the function any-
where that you can write an integer value. You have already seen examples where the func-
tion’s return value is assigned to a variable and where the function’s return value is sent to
the print function. To further illustrate the point, here is a statement that uses the randint
function in a math expression:

x = random.randint(1, 10) * 2

In this statement, a random number in the range of 1 through 10 is generated and then mul-
tiplied by 2. The result is a random integer from 2 to 20 assigned to the x variable. You can
also test the return value of the function with an if statement, as demonstrated in the fol-
lowing In the Spotlight section.

In the Spotlight:
Using Random Numbers to Represent Other Values
Dr. Kimura was so happy with the dice rolling simulator that you wrote for him, he has
asked you to write one more program. He would like a program that he can use to simu-
late ten coin tosses, one after the other. Each time the program simulates a coin toss, it
should randomly display either “Heads” or “Tails”.

You decide that you can simulate the tossing of a coin by randomly generating a number
in the range of 1 through 2. You will write an if statement that displays “Heads” if the
random number is 1, or “Tails” otherwise. Here is the pseudocode:

Repeat 10 times:
If a random number in the range of 1 through 2 equals 1 then:

Display ‘Heads’
Else:

Display ‘Tails’

Because the program should simulate 10 tosses of a coin you decide to use a for loop. The
program is shown in Program 6-5.

Program 6-5 (coin_toss.py)

1 # This program simulates 10 tosses of a coin.
2 import random
3
4 # Constants
5 HEADS = 1
6 TAILS = 2
7 TOSSES = 10
8

6.1 Introduction to Value-Returning Functions: Generating Random Numbers 211

The randrange, random, and uniform Functions
The standard library’s random module contains numerous functions for working with ran-
dom numbers. In addition to the randint function, you might find the randrange, ran-
dom, and uniform functions useful. (To use any of these functions you need to write import
random at the top of your program.)

If you remember how to use the range function (which we discussed in Chapter 5) then
you will immediately be comfortable with the randrange function. The randrange
function takes the same arguments as the range function. The difference is that the
randrange function does not return a list of values. Instead, it returns a randomly selected
value from a sequence of values. For example, the following statement assigns a random
number in the range of 0 through 9 to the number variable:

number = random.randrange(10)

The argument, in this case 10, specifies the ending limit of the sequence of values. The func-
tion will return a randomly selected number from the sequence of values 0 up to, but not
including, the ending limit. The following statement specifies both a starting value and an
ending limit for the sequence:

number = random.randrange(5, 10)

When this statement executes, a random number in the range of 5 through 9 will be
assigned to number. The following statement specifies a starting value, an ending limit, and
a step value:

number = random.randrange(0, 101, 10)

9 def main():
10 for toss in range(TOSSES):
11 # Simulate the coin toss.
12 if random.randint(HEADS, TAILS) == HEADS:
13 print('Heads')
14 else:
15 print('Tails')
16
17 # Call the main function.
18 main()

Program Output

Tails
Tails
Heads
Tails
Heads
Heads
Heads
Tails
Heads
Tails

212 Chapter 6 Value-Returning Functions and Modules

In this statement the randrange function returns a randomly selected value from the fol-
lowing sequence of numbers:

[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Both the randint and the randrange functions return an integer number. The random
function returns, however, returns a random floating-point number. You do not pass any
arguments to the random function. When you call it, it returns a random floating point
number in the range of 0.0 up to 1.0 (but not including 1.0). Here is an example:

number = random.random()

The uniform function also returns a random floating-point number, but allows you to spec-
ify the range of values to select from. Here is an example:

number = random.uniform(1.0, 10.0)

In this statement the uniform function returns a random floating-point number in the
range of 1.0 through 10.0 and assigns it to the number variable.

Random Number Seeds

The numbers that are generated by the functions in the random module are not truly ran-
dom. Although we commonly refer to them as random numbers, they are actually pseudo-
random numbers that are calculated by a formula. The formula that generates random
numbers has to be initialized with a value known as a seed value. The seed value is used in
the calculation that returns the next random number in the series. When the random mod-
ule is imported, it retrieves the system time from the computer’s internal clock and uses that
as the seed value. The system time is an integer that represents the current date and time,
down to a hundredth of a second.

If the same seed value were always used, the random number functions would always gen-
erate the same series of pseudorandom numbers. Because the system time changes every
hundredth of a second, it is a fairly safe bet that each time you import the random module,
a different sequence of random numbers will be generated. However, there may be some
applications in which you want to always generate the same sequence of random numbers.
If that is the case, you can call the random.seed function to specify a seed value. Here is
an example:

random.seed(10)

In this example, the value 10 is specified as the seed value. If a program calls the
random.seed function, passing the same value as an argument each time it runs, it will
always produce the same sequence of pseudorandom numbers. To demonstrate, look at the
following interactive sessions. (We have added line numbers for easier reference.)

1 >>> import random e

2 >>> random.seed(10) e

3 >>> random.randint(1, 100) e

4 58
5 >>> random.randint(1, 100) e

6 43

7 >>> random.randint(1, 100) e

8 58
9 >>> random.randint(1, 100) e

10 21
11 >>>

In line 1 we import the random module. In line 2 we call the random.seed function, pass-
ing 10 as the seed value. In lines 3, 5, 7, and 9 we call random.randint function to get a
pseudorandom number in the range of 1 through 100. As you can see, the function gave us
the numbers 58, 43, 58, and 21. If we start a new interactive session and repeat these state-
ments, we get the same sequence of pseudorandom numbers, as shown here:

1 >>> import random e

2 >>> random.seed(10) e

3 >>> random.randint(1, 100) e

4 58
5 >>> random.randint(1, 100) e

6 43
7 >>> random.randint(1, 100) e

8 58
9 >>> random.randint(1, 100) e

10 21
11 >>>

Checkpoint

6.1 How does a value-returning function differ from the simple functions we discussed
in Chapter 3?

6.2 What is a library function?

6.3 Why are library functions like “black boxes”?

6.4 What does the following statement do?

x = random.randint(1, 100)

6.5 What does the following statement do?

print(random.randint(1, 20))

6.6 What does the following statement do?

print(random.randrange(10, 20))

6.7 What does the following statement do?

print(random.random())

6.8 What does the following statement do?

print(random.uniform(0.1, 0.5))

6.9 When the random module is imported, what does it use as a seed value for random
number generation?

6.10 What happens if the same seed value is always used for generating random
numbers?

6.1 Introduction to Value-Returning Functions: Generating Random Numbers 213

214 Chapter 6 Value-Returning Functions and Modules

6.2 Writing Your Own Value-Returning Functions

CONCEPT: A value-returning function has a return statement that returns a value
back to the part of the program that called it.

You write a value-returning function in the same way that you write a simple function, with
one exception: a value-returning function must have a return statement. Here is the gen-
eral format of a value-returning function definition in Python:

def function_name():
statement
statement
etc.
return expression

One of the statements in the function must be a return statement, which takes the follow-
ing form:

return expression

The value of the expression that follows the key word return will be sent back to the
part of the program that called the function. This can be any value, variable, or expression
that has a value (such as a math expression).

Here is a simple example of a value-returning function:

def sum(num1, num2):
result = num1 + num2
return result

Figure 6-5 illustrates various parts of the function.

The purpose of this function is to accept two integer values as arguments and return their
sum. Let’s take a closer look at how it works. The first statement in the function’s block
assigns the value of num1 + num2 to the result variable. Next, the return statement exe-
cutes, which causes the function to end execution and sends the value referenced by the
result variable back to the part of the program that called the function. Program 6-6
demonstrates the function.

def sum(num1, num2):
 result = num1 + num2
 return result

This function returns
the value referenced by

the result variable.

The name of this
function is sum.

num1 and num2 are
parameters.

Figure 6-5 Parts of the function

VideoNote
Writing a Value-
Returning Function

6.2 Writing Your Own Value-Returning Functions 215

def sum(num1, num2):
 result = num1 + num2
 return result

total = sum(first_age, second_age)

22 24

46

Figure 6-6 Arguments are passed to the sum function and a value is returned

Program 6-6 (total_ages.py)

1 # This program uses the return value of a function.
2
3 def main():
4 # Get the user's age.
5 first_age = int(input('Enter your age: '))
6
7 # Get the user's best friend's age.
8 second_age = int(input("Enter your best friend's age: "))
9

10 # Get the sum of both ages.
11 total = sum(first_age, second_age)
12
13 # Display the total age.
14 print('Together you are', total, 'years old.')
15
16 # The sum function accepts two numeric arguments and
17 # returns the sum of those arguments.
18 def sum(num1, num2):
19 result = num1 + num2
20 return result
21
22 # Call the main function.
23 main()

Program Output (with input shown in bold)

Enter your age: 22 e

Enter your best friend's age: 24 e

Together you are 46 years old.

In the main function, the program gets two values from the user and stores them in the
first_age and second_age variables. The statement in line 11 calls the sum function,
passing first_age and second_age as arguments. The value that is returned from the sum
function is assigned to the total variable. In this case, the function will return 46. Figure
6-6 shows how the arguments are passed into the function, and how a value is returned
back from the function.

216 Chapter 6 Value-Returning Functions and Modules

Making the Most of the return Statement
Look again at the sum function presented in Program 6-6:

def sum(num1, num2):
result = num1 + num2
return result

Notice that two things happen inside this function: (1) the value of the expression num1 +
num2 is assigned to the result variable, and (2) the value of the result variable is
returned. Although this function does what it sets out to do, it can be simplified. Because
the return statement can return the value of an expression, you can eliminate the result
variable and rewrite the function as:

def sum(num1, num2):
return num1 + num2

This version of the function does not store the value of num1 + num2 in a variable. Instead, it
takes advantage of the fact that the return statement can return the value of an expression.
This version of the function does the same thing as the previous version, but in only one step.

How to Use Value-Returning Functions
Value-returning functions provide many of the same benefits as simple functions: they sim-
plify code, reduce duplication, enhance your ability to test code, increase the speed of devel-
opment, and ease the facilitation of teamwork.

Because value-returning functions return a value, they can be useful in specific situations.
For example, you can use a value-returning function to prompt the user for input, and then
it can return the value entered by the user. Suppose you’ve been asked to design a program
that calculates the sale price of an item in a retail business. To do that, the program would
need to get the item’s regular price from the user. Here is a function you could define for
that purpose:

def get_regular_price():
price = float(input("Enter the item's regular price: "))
return price

Then, elsewhere in the program, you could call that function, as shown here:

Get the item's regular price.
reg_price = get_regular_price()

When this statement executes, the get_regular_price function is called, which gets a
value from the user and returns it. That value is then assigned to the reg_price variable.

You can also use functions to simplify complex mathematical expressions. For example,
calculating the sale price of an item seems like it would be a simple task: you calculate the
discount and subtract it from the regular price. In a program, however, a statement that
performs this calculation is not that straightforward, as shown in the following example.
(Assume DISCOUNT_PERCENTAGE is a global constant that is defined in the program, and it
specifies the percentage of the discount.)

sale_price = reg_price – (reg_price * DISCOUNT_PERCENTAGE)

6.2 Writing Your Own Value-Returning Functions 217

At a glance, this statement isn’t easy to understand because it performs so many steps: it
calculates the discount amount, subtracts that value from reg_price, and assigns the
result to sale_price. You could simplify the statement by breaking out part of the math
expression and placing it in a function. Here is a function named discount that accepts an
item’s price as an argument and returns the amount of the discount:

def discount(price):
return price * DISCOUNT_PERCENTAGE

You could then call the function in your calculation:

sale_price = reg_price – discount(reg_price)

This statement is easier to read than the one previously shown, and it is clearer that the dis-
count is being subtracted from the regular price. Program 6-7 shows the complete sale price
calculating program using the functions just described.

Program 6-7 (sale_price.py)

1 # This program calculates a retail item's
2 # sale price.
3
4 # DISCOUNT_PERCENTAGE is used as a global
5 # constant for the discount percentage.
6 DISCOUNT_PERCENTAGE = 0.20
7
8 # The main function.
9 def main():

10 # Get the item's regular price.
11 reg_price = get_regular_price()
12
13 # Calculate the sale price.
14 sale_price = reg_price - discount(reg_price)
15
16 # Display the sale price.
17 print('The sale price is $', format(sale_price, ',.2f'), sep='')
18
19 # The get_regular_price function prompts the
20 # user to enter an item's regular price and it
21 # returns that value.
22 def get_regular_price():
23 price = float(input("Enter the item's regular price: "))
24 return price
25
26 # The discount function accepts an item's price
27 # as an argument and returns the amount of the
28 # discount, specified by DISCOUNT_PERCENTAGE.
29 def discount(price):

(program continues)

218 Chapter 6 Value-Returning Functions and Modules

Program 6-7 (continued)

30 return price * DISCOUNT_PERCENTAGE
31
32 # Call the main function.
33 main()

Program Output (with input shown in bold)

Enter the item's regular price: 100.00 e

The sale price is $80.00

Using IPO Charts
An IPO chart is a simple but effective tool that programmers sometimes use for designing
and documenting functions. IPO stands for input, processing, and output, and an IPO
chart describes the input, processing, and output of a function. These items are usually laid
out in columns: the input column shows a description of the data that is passed to the func-
tion as arguments, the processing column shows a description of the process that the func-
tion performs, and the output column describes the data that is returned from the function.
For example, Figure 6-7 shows IPO charts for the get_regular_price and discount
functions that you saw in Program 6-7.

IPO Chart for the get_regular_price Function

Input Processing Output

None Prompts the user to enter an
item's regular price

The item's regular
price

IPO Chart for the discount Function

Input Processing Output

An item's
regular price

Calculates an item's discount
by multiplying the regular price
by the global constant
DISCOUNT_PERCENTAGE

The item's discount

Figure 6-7 IPO charts for the getRegularPrice and discount functions

In the Spotlight:
Modularizing with Functions
Hal owns a business named Make Your Own Music, which sells guitars, drums, banjos,
synthesizers, and many other musical instruments. Hal’s sales staff works strictly on com-
mission. At the end of the month, each salesperson’s commission is calculated according to
Table 6-1.

Table 6-1 Sales commission rates

Sales This Month Commission Rate

Less than $10,000 10%

$10,000–14,999 12%

$15,000–17,999 14%

$18,000–21,999 16%

$22,000 or more 18%

For example, a salesperson with $16,000 in monthly sales will earn a 14 percent commis-
sion ($2,240). Another salesperson with $18,000 in monthly sales will earn a 16 percent
commission ($2,880). A person with $30,000 in sales will earn an 18 percent commission
($5,400).

Because the staff gets paid once per month, Hal allows each employee to take up to $2,000
per month in advance. When sales commissions are calculated, the amount of each employee’s
advanced pay is subtracted from the commission. If any salesperson’s commissions are less
than the amount of their advance, they must reimburse Hal for the difference. To calculate
a salesperson’s monthly pay, Hal uses the following formula:

pay � sales � commission rate � advanced pay

Hal has asked you to write a program that makes this calculation for him. The following
general algorithm outlines the steps the program must take.

1. Get the salesperson’s monthly sales.
2. Get the amount of advanced pay.
3. Use the amount of monthly sales to determine the commission rate.
4. Calculate the salesperson’s pay using the formula previously shown. If the amount is

negative, indicate that the salesperson must reimburse the company.

Notice that the IPO charts provide only brief descriptions of a function’s input, processing,
and output, but do not show the specific steps taken in a function. In many cases, however,
IPO charts include sufficient information so that they can be used instead of a flowchart.
The decision of whether to use an IPO chart, a flowchart, or both is often left to the pro-
grammer’s personal preference.

6.2 Writing Your Own Value-Returning Functions 219

Program 6-8 shows the code, which is written using several functions. Rather than present-
ing the entire program at once, let’s first examine the main function and then each function
separately. Here is the main function:

Program 6-8 (commission_rate.py) main function

1 # This program calculates a salesperson's pay
2 # at Make Your Own Music.
3 def main():
4 # Get the amount of sales.
5 sales = get_sales()
6
7 # Get the amount of advanced pay.
8 advanced_pay = get_advanced_pay()
9

10 # Determine the commission rate.
11 comm_rate = determine_comm_rate(sales)
12
13 # Calculate the pay.
14 pay = sales * comm_rate - advanced_pay
15
16 # Display the amount of pay.
17 print('The pay is $', format(pay, ',.2f'), sep='')
18
19 # Determine whether the pay is negative.
20 if pay < 0:
21 print('The Salesperson must reimburse')
22 print('the company.')
23

Line 5 calls the get_sales function, which gets the amount of sales from the user and
returns that value. The value that is returned from the function is assigned to the sales
variable. Line 8 calls the get_advanced_pay function, which gets the amount of advanced
pay from the user and returns that value. The value that is returned from the function is
assigned to the advanced_pay variable.

Line 11 calls the determine_comm_rate function, passing sales as an argument. This
function returns the rate of commission for the amount of sales. That value is assigned to
the comm_rate variable. Line 14 calculates the amount of pay, and then line 17 displays
that amount. The if statement in lines 20 through 22 determines whether the pay is nega-
tive, and if so, displays a message indicating that the salesperson must reimburse the com-
pany. The get_sales function definition is next.

Program 6-8 (commission_rate.py) get_sales function

24 # The get_sales function gets a salesperson's
25 # monthly sales from the user and returns that value.
26 def get_sales():
27 # Get the amount of monthly sales.

220 Chapter 6 Value-Returning Functions and Modules

28 monthly_sales = float(input('Enter the monthly sales: '))
29
30 # Return the amount entered.
31 return monthly_sales
32

The purpose of the get_sales function is to prompt the user to enter the amount of sales
for a salesperson and return that amount. Line 28 prompts the user to enter the sales, and
stores the user’s input in the monthly_sales variable. Line 31 returns the amount in the
monthly_sales variable. Next is the definition of the get_advanced_pay function.

Program 6-8 (commission_rate.py) get_advanced_pay function

33 # The get_advanced_pay function gets the amount of
34 # advanced pay given to the salesperson and returns
35 # that amount.
36 def get_advanced_pay():
37 # Get the amount of advanced pay.
38 print('Enter the amount of advanced pay, or')
39 print('enter 0 if no advanced pay was given.')
40 advanced = float(input('Advanced pay: '))
41
42 # Return the amount entered.
43 return advanced
44

The purpose of the get_advanced_pay function is to prompt the user to enter the amount
of advanced pay for a salesperson and return that amount. Lines 38 and 39 tell the user to
enter the amount of advanced pay (or 0 if none was given). Line 40 gets the user’s input
and stores it in the advanced variable. Line 43 returns the amount in the advanced vari-
able. Defining the determine_comm_rate function comes next.

Program 6-8 (commission_rate.py) determine_comm_rate function

45 # The determine_comm_rate function accepts the
46 # amount of sales as an argument and returns the
47 # applicable commission rate.
48 def determine_comm_rate(sales):
49 # Determine the commission rate.
50 if sales < 10000.00:
51 rate = 0.10
52 elif sales >= 10000 and sales <= 14999.99:
53 rate = 0.12
54 elif sales >= 15000 and sales <= 17999.99:
55 rate = 0.14
56 elif sales >= 18000 and sales <= 21999.99:
57 rate = 0.16

(program continues)

6.2 Writing Your Own Value-Returning Functions 221

Program 6-8 (continued)

58 else:
59 rate = 0.18
60
61 # Return the commission rate.
62 return rate
63

The determine_comm_rate function accepts the amount of sales as an argument, and it
returns the applicable commission rate for that amount of sales. The if-elif-else state-
ment in lines 50 through 59 tests the sales parameter and assigns the correct value to the
local rate variable. Line 62 returns the value in the local rate variable.

Program Output (with input shown in bold)

Enter the monthly sales: 14650.00 e

Enter the amount of advanced pay, or
enter 0 if no advanced pay was given.
Advanced pay: 1000.00 e

The pay is $758.00

Program Output (with input shown in bold)

Enter the monthly sales: 9000.00 e

Enter the amount of advanced pay, or
enter 0 if no advanced pay was given.
Advanced pay: 0 e

The pay is $900.00

Program Output (with input shown in bold)

Enter the monthly sales: 12000.00 e

Enter the amount of advanced pay, or
enter 0 if no advanced pay was given.
Advanced pay: 2000.00 e

The pay is $-560.00
The salesperson must reimburse
the company.

222 Chapter 6 Value-Returning Functions and Modules

Returning Strings
So far you’ve seen examples of functions that return numbers. You can also write functions
that return strings. For example, the following function prompts the user to enter his or her
name, and then returns the string that the user entered.

def get_name():
Get the user's name.
name = input('Enter your name: ')
Return the name.
return name

Returning Boolean Values
Python allows you to write Boolean functions, which return either True or False. You can
use a Boolean function to test a condition, and then return either True or False to indi-
cate whether the condition exists. Boolean functions are useful for simplifying complex
conditions that are tested in decision and repetition structures.

For example, suppose you are designing a program that will ask the user to enter a num-
ber, and then determine whether that number is even or odd. The following code shows
how you can make that determination.

number = int(input('Enter a number: '))
if (number % 2) == 0:

print('The number is even.')
else:

print('The number is odd.')

Let’s take a closer look at the Boolean expression being tested by this if-else
statement:

(number % 2) == 0

This expression uses the % operator, which was introduced in Chapter 2. This is called the
remainder operator. It divides two numbers and returns the remainder of the division. So this
code is saying, “If the remainder of number divided by 2 is equal to 0, then display a mes-
sage indicating the number is even, or else display a message indicating the number is odd.”

Because dividing an even number by 2 will always give a remainder of 0, this logic will
work. The code would be easier to understand, however, if you could somehow rewrite it
to say, “If the number is even, then display a message indicating it is even, or else display a
message indicating it is odd.” As it turns out, this can be done with a Boolean function. In
this example, you could write a Boolean function named is_even that accepts a number
as an argument and returns True if the number is even, or False otherwise. The following
is the code for such a function.

def is_even(number):
Determine whether number is even. If it is,
set status to true. Otherwise, set status
to false.
if (number % 2) == 0:

status = True
else:

status = False
Return the value of the status variable.
return status

Then you can rewrite the if-else statement so it calls the is_even function to determine
whether number is even:

number = int(input('Enter a number: '))
if is_even(number):

print('The number is even.')
else:

print('The number is odd.')

6.2 Writing Your Own Value-Returning Functions 223

224 Chapter 6 Value-Returning Functions and Modules

Not only is this logic easier to understand, but now you have a function that you can call
in the program anytime you need to test a number to determine whether it is even.

Using Boolean Functions in Validation Code

You can also use Boolean functions to simplify complex input validation code. For instance,
suppose you are writing a program that prompts the user to enter a product model num-
ber and should only accept the values 100, 200, and 300. You could design the input algo-
rithm as follows:

Get the model number.
model = int(input('Enter the model number: '))

Validate the model number.
while model != 100 and model != 200 and model != 300:

print('The valid model numbers are 100, 200 and 300.')
model = int(input('Enter a valid model number: '))

The validation loop uses a long compound Boolean expression that will iterate as long as
model does not equal 100 and model does not equal 200 and model does not equal 300.
Although this logic will work, you can simplify the validation loop by writing a Boolean
function to test the model variable and then calling that function in the loop. For example,
suppose you pass the model variable to a function you write named is_invalid. The func-
tion returns True if model is invalid, or False otherwise. You could rewrite the validation
loop as follows:

Validate the model number.
while is_invalid(model):

print('The valid model numbers are 100, 200 and 300.')
model = int(input('Enter a valid model number: '))

This makes the loop easier to read. It is evident now that the loop iterates as long as model
is invalid. The following code shows how you might write the is_invalid function. It
accepts a model number as an argument, and if the argument is not 100 and the argument
is not 200 and the argument is not 300, the function returns True to indicate that it is
invalid. Otherwise, the function returns False.

def is_invalid(mod_num):
if mod_num != 100 and mod_num != 200 and mod_num != 300:

status = True
else:

status = False
return status

Returning Multiple Values
The examples of value-returning functions that we have looked at so far return a single value.
In Python, however, you are not limited to returning only one value. You can specify multiple
expressions separated by commas after the return statement, as shown in this general format:

return expression1, expression2, etc.

As an example, look at the following definition for a function named get_name. The func-
tion prompts the user to enter his or her first and last names. These names are stored in two
local variables: first and last. The return statement returns both of the variables.

def get_name():
Get the user's first and last names.
first = input('Enter your first name: ')
last = input('Enter your last name: ')

Return both names.
return first, last

When you call this function in an assignment statement, you need to use two variables on
the left side of the = operator. Here is an example:

first_name, last_name = get_name()

The values listed in the return statement are assigned, in the order that they appear, to the
variables on the left side of the = operator. After this statement executes, the value of the
first variable will be assigned to first_name and the value of the last variable will be
assigned to last_name. Note that the number of variables on the left side of the = operator
must match the number of values returned by the function. Otherwise an error will occur.

Checkpoint

6.11 What is the purpose of the return statement in a function?

6.12 Look at the following function definition:

def do_something(number):
return number * 2

a. What is the name of the function?

b. What does the function do?

c. Given the function definition, what will the following statement display?

print(do_something(10))

6.13 What is a Boolean function?

6.3 The math Module

CONCEPT: The Python standard library’s math module contains numerous func-
tions that can be used in mathematical calculations.

The math module in the Python standard library contains several functions that are useful
for performing mathematical operations. Table 6-2 lists many of the functions in the math
module. These functions typically accept one or more values as arguments, perform a math-
ematical operation using the arguments, and return the result. (All of the functions listed in
Table 6-2 return a float value, except the ceil and floor functions, which return int
values.) For example, one of the functions is named sqrt. The sqrt function accepts an
argument and returns the square root of the argument. Here is an example of how it is used:

result = math.sqrt(16)

6.3 The math Module 225

226 Chapter 6 Value-Returning Functions and Modules

This statement calls the sqrt function, passing 16 as an argument. The function returns the
square root of 16, which is then assigned to the result variable. Program 6-9 demonstrates
the sqrt function. Notice the import math statement in line 2. You need to write this in
any program that uses the math module.

Program 6-9 (square_root.py)

1 # This program demonstrates the sqrt function.
2 import math
3
4 def main():
5 # Get a number.
6 number = float(input('Enter a number: '))
7
8 # Get the square root of the number.
9 square_root = math.sqrt(number)

10
11 # Display the square root.
12 print('The square root of', number, 'is', square_root)
13
14 # Call the main function.
15 main()

Program Output (with input shown in bold)

Enter a number: 25 e

The square root of 25.0 is 5.0

Program 6-10 shows another example that uses the math module. This program uses the
hypot function to calculate the length of a right triangle’s hypotenuse.

Program 6-10 (hypotenuse.py)

1 # This program calculates the length of a right
2 # triangle's hypotenuse.
3 import math
4
5 def main():
6 # Get the length of the triangle's two sides.
7 a = float(input('Enter the length of side A: '))
8 b = float(input('Enter the length of side B: '))
9

10 # Calculate the length of the hypotenuse.
11 c = math.hypot(a, b)
12
13 # Display the length of the hypotenuse.
14 print('The length of the hypotenuse is', c)
15

16 # Call the main function.
17 main()

Program Output (with input shown in bold)

Enter the length of side A: 5.0 e

Enter the length of side B: 12.0 e

The length of the hypotenuse is 13.0

The math.pi and math.e Values
The math module also defines two variables, pi and e, which are assigned mathematical
values for pi and e. You can use these variables in equations that require their values. For
example, the following statement, which calculates the area of a circle, uses pi. (Notice that
we use dot notation to refer to the variable.)

area = math.pi * radius**2

Checkpoint

6.14 What import statement do you need to write in a program that uses the math module.

6.15 Write a statement that uses a math module function to get the square root of 100
and assigns it to a variable.

6.16 Write a statement that uses a math module function to convert 45 degrees to
radians and assigns the value to a variable.

Table 6-2 Many of the functions in the math module

math Module Function Description

acos(x) Returns the arc cosine of x, in radians.

asin(x) Returns the arc sine of x, in radians.

atan(x) Returns the arc tangent of x, in radians.

ceil(x) Returns the smallest integer that is greater than or equal to x.

cos(x) Returns the cosine of x in radians.

degrees(x) Assuming x is an angle in radians, the function returns the angle
converted to degrees.

exp(x) Returns ex

floor(x) Returns the largest integer that is less than or equal to x.

hypot(x, y) Returns the length of a hypotenuse that extends from (0, 0) to (x, y).

log(x) Returns the natural logarithm of x.

log10(x) Returns the base-10 logarithm of x.

radians(x) Assuming x is an angle in degrees, the function returns the angle
converted to radians.

sin(x) Returns the sine of x in radians.

sqrt(x) Returns the square root of x.
tan(x) Returns the tangent of x in radians.

6.3 The math Module 227

228 Chapter 6 Value-Returning Functions and Modules

6.4 Storing Functions in Modules

CONCEPT: A module is a file that contains Python code. Large programs are easier
to debug and maintain when they are divided into modules.

As your programs become larger and more complex, the need to organize your code becomes
greater. You have already learned that a large and complex program should be divided into
functions that each performs a specific task. As you write more and more functions in a pro-
gram, you should consider organizing the functions by storing them in modules.

A module is simply a file that contains Python code. When you break a program into mod-
ules, each module should contain functions that perform related tasks. For example, sup-
pose you are writing an accounting system. You would store all of the account receivable
functions in their own module, all of the account payable functions in their own module,
and all of the payroll functions in their own module. This approach, which is called
modularization, makes the program easier to understand, test, and maintain.

Modules also make it easier to reuse the same code in more than one program. If you have
written a set of functions that are needed in several different programs, you can place those
functions in a module. Then, you can import the module in each program that needs to call
one of the functions.

Let’s look at a simple example. Suppose your instructor has asked you to write a program
that calculates the following:

• The area of a circle
• The circumference of a circle
• The area of a rectangle
• The perimeter of a rectangle

There are obviously two categories of calculations required in this program: those related
to circles, and those related to rectangles. You could write all of the circle-related functions
in one module, and the rectangle-related functions in another module. Program 6-11 shows
the circle module. The module contains two function definitions: area (which returns the
area of a circle) and circumference (which returns the circumference of a circle).

Program 6-11 (circle.py)

1 # The circle module has functions that perform
2 # calculations related to circles.
3 import math
4
5 # The area function accepts a circle's radius as an
6 # argument and returns the area of the circle.
7 def area(radius):
8 return math.pi * radius**2
9

10 # The circumference function accepts a circle's
11 # radius and returns the circle's circumference.
12 def circumference(radius):
13 return 2 * math.pi * radius

Program 6-12 shows the rectangle module. The module contains two function defini-
tions: area (which returns the area of a rectangle) and perimeter (which returns the
perimeter of a rectangle.)

Program 6-12 (rectangle.py)

1 # The rectangle module has functions that perform
2 # calculations related to rectangles.
3
4 # The area function accepts a rectangle's width and
5 # length as arguments and returns the rectangle's area.
6 def area(width, length):
7 return width * length
8
9 # The perimeter function accepts a rectangle's width

10 # and length as arguments and returns the rectangle's
11 # perimeter.
12 def perimeter(width, length):
13 return 2 * (width + length)

Notice that both of these files contain function definitions, but they do not contain code that
calls the functions. That will be done by the program or programs that import these modules.

Before continuing, we should mention the following things about module names:

• A module’s file name should end in .py. If the module’s file name does not end in .py
you will not be able to import it into other programs.

• A module’s name cannot be the same as a Python key word. An error would occur,
for example, if you named a module for.

To use these modules in a program, you import them with the import statement. Here is
an example of how we would import the circle module:

import circle

When the Python interpreter reads this statement it will look for the file circle.py in the
same folder as the program that is trying to import it. If it finds the file it will load it into
memory. If it does not find the file, an error occurs.2

6.4 Storing Functions in Modules 229

2Actually the Python interpreter is set up to look in various other predefined locations in your system when it does
not find a module in the program’s folder. If you choose to learn about the advanced features of Python, you can
learn how to specify where the interpreter looks for modules.

230 Chapter 6 Value-Returning Functions and Modules

Once a module is imported you can call its functions. Assuming that radius is a variable
that is assigned the radius of a circle, here is an example of how we would call the area
and circumference functions:

my_area = circle.area(radius)
my_circum = circle.circumference(radius)

Program 6-13 shows a complete program that uses these modules.

Program 6-13 (geometry.py)

1 # This program allows the user to choose various
2 # geometry calculations from a menu. This program
3 # imports the circle and rectangle modules.
4 import circle
5 import rectangle
6
7 # Constants for the menu choices
8 AREA_CIRCLE_CHOICE = 1
9 CIRCUMFERENCE_CHOICE = 2

10 AREA_RECTANGLE_CHOICE = 3
11 PERIMETER_RECTANGLE_CHOICE = 4
12 QUIT_CHOICE = 5
13
14 # The main function.
15 def main():
16 # The choice variable controls the loop
17 # and holds the user's menu choice.
18 choice = 0
19
20 while choice != QUIT_CHOICE:
21 # display the menu.
22 display_menu()
23
24 # Get the user's choice.
25 choice = int(input('Enter your choice: '))
26
27 # Perform the selected action.
28 if choice == AREA_CIRCLE_CHOICE:
29 radius = float(input("Enter the circle's radius: "))
30 print('The area is', circle.area(radius))
31 elif choice == CIRCUMFERENCE_CHOICE:
32 radius = float(input("Enter the circle's radius: "))
33 print('The circumference is', \
34 circle.circumference(radius))
35 elif choice == AREA_RECTANGLE_CHOICE:
36 width = float(input("Enter the rectangle's width: "))
37 length = float(input("Enter the rectangle's length: "))
38 print('The area is', rectangle.area(width, length))

39 elif choice == PERIMETER_RECTANGLE_CHOICE:
40 width = float(input("Enter the rectangle's width: "))
41 length = float(input("Enter the rectangle's length: "))
42 print('The perimeter is', \
43 rectangle.perimeter(width, length))
44 elif choice == QUIT_CHOICE:
45 print('Exiting the program...')
46 else:
47 print('Error: invalid selection.')
48
49 # The display_menu function displays a menu.
50 def display_menu():
51 print(' MENU')
52 print('1) Area of a circle')
53 print('2) Circumference of a circle')
54 print('3) Area of a rectangle')
55 print('4) Perimeter of a rectangle')
56 print('5) Quit')
57
58 # Call the main function.
59 main()

Program Output (with input shown in bold)

MENU
1) Area of a circle
2) Circumference of a circle
3) Area of a rectangle
4) Perimeter of a rectangle
5) Quit
Enter your choice: 1 e

Enter the circle's radius: 10
The area is 314.159265359

MENU
1) Area of a circle
2) Circumference of a circle
3) Area of a rectangle
4) Perimeter of a rectangle
5) Quit
Enter your choice: 2 e

Enter the circle's radius: 10
The circumference is 62.8318530718

MENU
1) Area of a circle
2) Circumference of a circle
3) Area of a rectangle
4) Perimeter of a rectangle
5) Quit

6.4 Storing Functions in Modules 231

(program output continues)

232 Chapter 6 Value-Returning Functions and Modules

Program Output (continued)

Enter your choice: 3 e
Enter the rectangle's width: 5
Enter the rectangle's length: 10
The area is 50

MENU
1) Area of a circle
2) Circumference of a circle
3) Area of a rectangle
4) Perimeter of a rectangle
5) Quit
Enter your choice: 4 e

Enter the rectangle's width: 5
Enter the rectangle's length: 10
The perimeter is 30

MENU
1) Area of a circle
2) Circumference of a circle
3) Area of a rectangle
4) Perimeter of a rectangle
5) Quit
Enter your choice: 5 e

Exiting the program...

Menu Driven Programs
Program 6-13 is an example of a menu-driven program. A menu-driven program displays
a list of the operations on the screen, and allows the user to select the operation that he or
she wants the program to perform. The list of operations that is displayed on the screen is
called a menu. When Program 6-13 is running, the user enters 1 to calculate the area of a
circle, 2 to calculate the circumference of a circle, and so forth.

Once the user types a menu selection, the program uses a decision structure to determine
which menu item the user selected. An if-elif-else statement is used in Program 6-13 (in
lines 28 through 47) to carry out the user’s desired action. The entire process of displaying a
menu, getting the user’s selection, and carrying out that selection is repeated by a while loop
(which begins in line 14). The loop repeats until the user selects 5 (Quit) from the menu.

Review Questions
Multiple Choice

1. This is a prewritten function that is built into a programming language.
a. standard function
b. library function
c. custom function
d. cafeteria function

2. This term describes any mechanism that accepts input, performs some operation that
cannot be seen on the input, and produces output.
a. glass box
b. white box
c. opaque box
d. black box

3. This standard library function returns a random integer within a specified range of val-
ues.
a. random
b. randint
c. random_integer
d. uniform

4. This standard library function returns a random floating-point number in the range of
0.0 up to 1.0 (but not including 1.0).
a. random
b. randint
c. random_integer
d. uniform

5. This standard library function returns a random floating-point number within a speci-
fied range of values.
a. random
b. randint
c. random_integer
d. uniform

6. This statement causes a function to end and sends a value back to the part of the pro-
gram that called the function.
a. end
b. send
c. exit
d. return

7. This is a design tool that describes the input, processing, and output of a function.
a. hierarchy chart
b. IPO chart
c. datagram chart
d. data processing chart

8. This type of function returns either True or False.
a. Binary
b. true_false
c. Boolean
d. logical

9. This is math module function.
a. derivative
b. factor
c. sqrt
d. differentiate

Review Questions 233

234 Chapter 6 Value-Returning Functions and Modules

10. A menu is a __________.
a. case structure that selects an operation in a program
b. group of modules that perform individual tasks
c. list of operations displayed on the screen that the user may choose from
d. table of Boolean choices

True or False

1. Some library functions are built into the Python interpreter.

2. You do not have to have an import statement in a program to use the functions in the
random module.

3. Complex mathematical expressions can sometimes be simplified by breaking out part
of the expression and putting it in a function.

4. A function in Python can return more than one value.

5. IPO charts provide only brief descriptions of a function’s input, processing, and out-
put, but do not show the specific steps taken in a function.

Short Answer

1. Suppose you want to select a random number from the following sequence:

0, 5, 10, 15, 20, 25, 30

What library function would you use?

2. What statement do you have to have in a value-returning function?

3. What three things are listed on an IPO chart?

4. What is a Boolean function?

5. What are the advantages of breaking a large program into modules?

Algorithm Workbench

1. Write a statement that generates a random number in the range of 1 through 100 and
assigns it to a variable named rand.

2. The following statement calls a function named half, which returns a value that is half
that of the argument. (Assume the number variable references a float value.) Write
code for the function.

result = half(number)

3. A program contains the following function definition:

def cube(num):
return num * num * num

Write a statement that passes the value 4 to this function and assigns its return value
to the variable result.

4. Write a function named times_ten that accepts a number as an argument. When the
function is called, it should return the value of its argument multiplied times 10.

5. Write a function named get_first_name that asks the user to enter his or her first
name, and returns it.

Programming Exercises
1. Feet to Inches

One foot equals 12 inches. Write a function named feet_to_inches that accepts a num-
ber of feet as an argument, and returns the number of inches in that many feet. Use the
function in a program that prompts the user to enter a number of feet and then displays the
number of inches in that many feet.

2. Math Quiz

Write a program that gives simple math quizzes. The program should display two random
numbers that are to be added, such as:

247

+ 129

The program should allow the student to enter the answer. If the answer is correct, a mes-
sage of congratulations should be displayed. If the answer is incorrect, a message showing
the correct answer should be displayed.

3. Maximum of Two Values

Write a function named maximum that accepts two integer values as arguments and returns
the value that is the greater of the two. For example, if 7 and 12 are passed as arguments
to the function, the function should return 12. Use the function in a program that prompts
the user to enter two integer values. The program should display the value that is the
greater of the two.

4. Falling Distance

The following formula can be used to determine the distance an object falls due to gravity
in a specific time period, starting from rest:

d � 1⁄2 gt2

The variables in the formula are as follows: d is the distance in meters, g is 9.8, and t is the
amount of time in seconds, that the object has been falling.

Write a function named falling_distance that accepts an object’s falling time in seconds
as an argument. The function should return the distance in meters that the object has fallen
during that time interval. Write a program that calls the function in a loop that passes the
values 1 through 10 as arguments and displays the return value.

5. Kinetic Energy

In physics, an object that is in motion is said to have kinetic energy (KE). The following for-
mula can be used to determine a moving object’s kinetic energy:

KE � 1⁄2 mv2

The variables in the formula are as follows: KE is the kinetic energy in joules, m is the
object’s mass in kilograms, and v is the object’s velocity in meters per second.

Write a function named kinetic_energy that accepts an object’s mass in kilograms and
velocity in meters per second as arguments. The function should return the amount of
kinetic energy that the object has. Write a program that asks the user to enter values for
mass and velocity, and then calls the kinetic_energy function to get the object’s kinetic
energy.

Programming Exercises 235

VideoNote
The Feet to Inches
Problem

236 Chapter 6 Value-Returning Functions and Modules

6. Test Average and Grade

Write a program that asks the user to enter five test scores. The program should display a letter
grade for each score and the average test score. Write the following functions in the program:

• calc_average—This function should accept five test scores as arguments and return
the average of the scores.

• determine_grade—This function should accept a test score as an argument and
return a letter grade for the score, based on the following grading scale:

Score Letter Grade

90–100 A

80–89 B

70–79 C

60–69 D

Below 60 F

7. Odd/Even Counter

In this chapter you saw an example of how to write an algorithm that determines whether
a number is even or odd. Write a program that generates 100 random numbers, and keeps
a count of how many of those random numbers are even and how many are odd.

8. Prime Numbers

A prime number is a number that is only evenly divisible by itself and 1. For example, the
number 5 is prime because it can only be evenly divided by 1 and 5. The number 6, how-
ever, is not prime because it can be divided evenly by 1, 2, 3, and 6.

Write a Boolean function named is_prime which takes an integer as an argument and
returns True if the argument is a prime number, or False otherwise. Use the function in a
program that prompts the user to enter a number and then displays a message indicating
whether the number is prime.

TIP: Recall that the % operator divides one number by another and returns the
remainder of the division. In an expression such as num1 % num2, the % operator will
return 0 if num1 is evenly divisible by num2.

9. Prime Number List

This exercise assumes you have already written the is_prime function in Programming
Exercise 8. Write another program that displays all of the prime numbers from 1 through 100.
The program should have a loop that calls the is_prime function.

10. Future Value

Suppose you have a certain amount of money in a savings account that earns compound
monthly interest and you want to calculate the amount that you will have after a specific
number of months. The formula is

F � P � (1 � i)t

The terms in the formula are as follows:

• F is the future value of the account after the specified time period.
• P is the present value of the account.
• i is the monthly interest rate.
• t is the number of months.

Write a program that prompts the user to enter the account’s present value, monthly interest
rate, and number of months that the money will be left in the account. The program should
pass these values to a function that returns the future value of the account after the specified
number of months. The program should display the account’s future value.

11. Random Number Guessing Game

Write a program that generates a random number in the range of 1 through 100 and asks the
user to guess what the number is. If the user’s guess is higher than the random number, the pro-
gram should display “Too high, try again.” If the user’s guess is lower than the random num-
ber, the program should display “Too low, try again.” If the user guesses the number, the appli-
cation should congratulate the user and then generate a new random number so the game can
start over.

Optional Enhancement: Enhance the game so it keeps count of the number of guesses that the
user makes. When the user correctly guesses the random number, the program should display
the number of guesses.

12. Rock, Paper, Scissors Game

Write a program that lets the user play the game of Rock, Paper, Scissors against the com-
puter. The program should work as follows.

1. When the program begins, a random number in the range of 1 through 3 is generated.
If the number is 1, then the computer has chosen rock. If the number is 2, then the com-
puter has chosen paper. If the number is 3, then the computer has chosen scissors.
(Don’t display the computer’s choice yet.)

2. The user enters his or her choice of “rock”, “paper”, or “scissors” at the keyboard.
3. The computer’s choice is displayed.
4. A winner is selected according to the following rules:

• If one player chooses rock and the other player chooses scissors, then rock wins.
(The rock smashes the scissors.)

• If one player chooses scissors and the other player chooses paper, then scissors wins.
(Scissors cuts paper.)

• If one player chooses paper and the other player chooses rock, then paper wins.
(Paper wraps rock.)

• If both players make the same choice, the game must be played again to determine
the winner.

Programming Exercises 237

This page intentionally left blank

7.1 Introduction to File Input and Output

CONCEPT: When a program needs to save data for later use, it writes the data in a
file. The data can be read from the file at a later time.

The programs you have written so far require the user to reenter data each time the pro-
gram runs, because data that is stored in RAM (referenced by variables) disappears once
the program stops running. If a program is to retain data between the times it runs, it must
have a way of saving it. Data is saved in a file, which is usually stored on a computer’s disk.
Once the data is saved in a file, it will remain there after the program stops running. Data
that is stored in a file can be retrieved and used at a later time.

Most of the commercial software packages that you use on a day-to-day basis store data in
files. The following are a few examples.

• Word processors. Word processing programs are used to write letters, memos, reports,
and other documents. The documents are then saved in files so they can be edited and
printed.

• Image editors. Image editing programs are used to draw graphics and edit images such
as the ones that you take with a digital camera. The images that you create or edit
with an image editor are saved in files.

• Spreadsheets. Spreadsheet programs are used to work with numerical data. Numbers
and mathematical formulas can be inserted into the rows and columns of the spread-
sheet. The spreadsheet can then be saved in a file for use later.

• Games. Many computer games keep data stored in files. For example, some games
keep a list of player names with their scores stored in a file. These games typically

Files and Exceptions7
TOPICS

7.1 Introduction to File Input and Output
7.2 Using Loops to Process Files

7.3 Processing Records
7.4 Exceptions

C
H

A
P

T
E

R

239

240 Chapter 7 Files and Exceptions

display the players’ names in order of their scores, from highest to lowest. Some
games also allow you to save your current game status in a file so you can quit
the game and then resume playing it later without having to start from the
beginning.

• Web browers. Sometimes when you visit a Web page, the browser stores a small file
known as a cookie on your computer. Cookies typically contain information about
the browsing session, such as the contents of a shopping cart.

Programs that are used in daily business operations rely extensively on files. Payroll pro-
grams keep employee data in files, inventory programs keep data about a company’s prod-
ucts in files, accounting systems keep data about a company’s financial operations in files,
and so on.

Programmers usually refer to the process of saving data in a file as “writing data to” the
file. When a piece of data is written to a file, it is copied from a variable in RAM to
the file. This is illustrated in Figure 7-1. The term output file is used to describe a file
that data is written to. It is called an output file because the program stores output
in it.

Figure 7-1 Writing data to a file

Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employee_name

7451Z
Variable
employee_id

18.65
Variable
pay_rate

Data is copied from
RAM to the file.

A file on the disk

The process of retrieving data from a file is known as “reading data from” the file.
When a piece of data is read from a file, it is copied from the file into RAM, and refer-
enced by a variable. Figure 7-2 illustrates this. The term input file is used to describe a
file that data is read from. It is called an input file because the program gets input from
the file.

7.1 Introduction to File Input and Output 241

This chapter discusses how to write data to files and read data from files. There are always
three steps that must be taken when a file is used by a program.

1. Open the file—Opening a file creates a connection between the file and the program.
Opening an output file usually creates the file on the disk and allows the program to
write data to it. Opening an input file allows the program to read data from the file.

2. Process the file—In this step data is either written to the file (if it is an output file) or
read from the file (if it is an input file).

3. Close the file—When the program is finished using the file, the file must be closed.
Closing a file disconnects the file from the program.

Types of Files
In general, there are two types of files: text and binary. A text file contains data that has been
encoded as text, using a scheme such as ASCII or Unicode. Even if the file contains numbers,
those numbers are stored in the file as a series of characters. As a result, the file may be opened
and viewed in a text editor such as Notepad. A binary file contains data that has not been con-
verted to text. The data that is stored in a binary file is intended only for a program to read. As
a consequence, you cannot view the contents of a binary file with a text editor.

Although Python allows you to work both text files and binary files, we will work only
with text files in this book. That way, you will be able to use an editor such as Notepad to
inspect the files that your programs create.

File Access Methods
Most programming languages provide two different ways to access data stored in a file:
sequential access and direct access. When you work with a sequential access file, you access

Figure 7-2 Reading data from a file

Cindy Chandler 7451Z 18.65

Cindy Chandler
Variable
employee_name

7451Z
Variable
employee_id

18.65
Variable
pay_rate

Data is copied from
the file to RAM, and
referenced by variables.

A file on the disk

242 Chapter 7 Files and Exceptions

data from the beginning of the file to the end of the file. If you want to read a piece of data
that is stored at the very end of the file, you have to read all of the data that comes before
it—you cannot jump directly to the desired data. This is similar to the way cassette tape
players work. If you want to listen to the last song on a cassette tape, you have to either
fast-forward over all of the songs that come before it or listen to them. There is no way to
jump directly to a specific song.

When you work with a direct access file (which is also known as a random access file), you
can jump directly to any piece of data in the file without reading the data that comes before
it. This is similar to the way a CD player or an MP3 player works. You can jump directly
to any song that you want to listen to.

In this book we will use sequential access files. Sequential access files are easy to work with,
and you can use them to gain an understanding of basic file operations.

Filenames and File Objects
Most computer users are accustomed to the fact that files are identified by a filename. For
example, when you create a document with a word processor and then save the document
in a file, you have to specify a filename. When you use a utility such as Windows Explorer
to examine the contents of your disk, you see a list of filenames. Figure 7-3 shows
how three files named cat.jpg, notes.txt, and resume.doc might be represented in
Windows Explorer.

Figure 7-3 Three files

Each operating system has its own rules for naming files. Many systems support the use
of filename extensions, which are short sequences of characters that appear at the end
of a filename preceded by a period (which is known as a “dot”). For example, the files
depicted in Figure 7-3 have the extensions .jpg,.txt, and.doc. The extension usually
indicates the type of data stored in the file. For example, the .jpg extension usually
indicates that the file contains a graphic image that is compressed according to the
JPEG image standard. The .txt extension usually indicates that the file contains
text. The .doc extension (as well as the .docx extension) usually indicates that the file
contains a Microsoft Word document.

In order for a program to work with a file on the computer’s disk, the program must cre-
ate a file object in memory. A file object is an object that is associated with a specific file,
and provides a way for the program to work with that file. In the program, a variable ref-
erences the file object. This variable is used to carry out any operations that are performed
on the file. This concept is shown in Figure 7-4.

7.1 Introduction to File Input and Output 243

Opening a File
You use the open function in Python to open a file. The open function creates a file object
and associates it with a file on the disk. Here is the general format of how the open func-
tion is used:

file_variable = open(filename, mode)

In the general format:

• file_variable is the name of the variable that will reference the file object.
• filename is a string specifying the name of the file.
• mode is a string specifying the mode (reading, writing, etc.) in which the file will be

opened. Table 7-1 shows three of the strings that you can use to specify a mode.
(There are other, more complex modes. The modes shown in Table 7-1 are the ones
we will use in this book.)

Figure 7-4 A variable name references a file object that is associated with a file

Cindy Chandler 7451Z 18.65

A file on the disk

variable_name File object

Table 7-1 Some of the Python file modes

Mode Description

'r' Open a file for reading only. The file cannot be changed or written to.

'w' Open a file for writing. If the file already exists, erase its contents. If it
does not exist, create it.

'a' Open a file to be written to. All data written to the file will be appended
to its end. If the file does not exist, create it.

For example, suppose the file customers.txt contains customer data, and we want to
open for reading. Here is an example of how we would call the open function:

customer_file = open('cusomters.txt', 'r')

244 Chapter 7 Files and Exceptions

After this statement executes, the file named customers.txt will be opened, and the vari-
able customer_file will reference a file object that we can use to read data from the file.

Suppose we want to create a file named sales.txt and write data to it. Here is an exam-
ple of how we would call the open function:

sales_file = open('sales.txt', 'w')

After this statement executes, the file named sales.txt will be created, and the variable
sales_file will reference a file object that we can use to write data to the file.

WARNING: Remember, when you use the 'w' mode you are creating the file on the
disk. If a file with the specified name already exists when the file is opened, the con-
tents of the existing file will be erased.

Specifying the Location of a File
When you pass a file name that does not contain a path as an argument to the open function,
the Python interpreter assumes that the file’s location is the same as that of the program. For
example, suppose a program is located in the following folder on a Windows computer:

C:\Users\Blake\Documents\Python

If the program is running and it executes the following statement, the file test.txt is cre-
ated in the same folder:

test_file = open('test.txt', 'w')

If you want to open a file in a different location, you can specify a path as well as a file-
name in the argument that you pass to the open function. If you specify a path in a string
literal (particularly on a Windows computer), be sure to prefix the string with the letter r.
Here is an example:

test_file = open(r'C:\Users\Blake\temp\test.txt', 'w')

This statement creates the file test.txt in the folder C:\Users\Blake\temp. The r
prefix specifies that the string is a raw string. This causes the Python interpreter to read the
backslash characters as literal backslashes. Without the r prefix, the interpreter would assume
that the backslash characters were part of escape sequences, and an error would occur.

Writing Data to a File
So far in this book you have worked with several of Python’s library functions, and you
have even written your own functions. Now we will introduce you to another type of func-
tion, which is known as a method. A method is a function that belongs to an object, and
performs some operation using that object. Once you have opened a file, you use the file
object’s methods to perform operations on the file.

For example, file objects have a method named write that can be used to write data to a
file. Here is the general format of how you call the write method:

file_variable.write(string)

7.1 Introduction to File Input and Output 245

In the format, file_variable is a variable that references a file object, and string is a
string that will be written to the file. The file must be opened for writing (using the 'w' or
'a' mode) or an error will occur.

Let’s assume that customer_file references a file object, and the file was opened for writ-
ing with the 'w' mode. Here is an example of how we would write the string ‘Charles Pace’
to the file:

customer_file.write('Charles Pace')

The following code shows another example:

name = 'Charles Pace'
customer_file.write(name)

The second statement writes the value referenced by the name variable to the file associated
with customer_file. In this case, it would write the string ‘Charles Pace’ to the file. (These
examples show a string being written to a file, but you can also write numeric values.)

Once a program is finished working with a file, it should close the file. Closing a file discon-
nects the program from the file. In some systems, failure to close an output file can cause a loss
of data. This happens because the data that is written to a file is first written to a buffer, which
is a small “holding section” in memory. When the buffer is full, the system writes the buffer’s
contents to the file. This technique increases the system’s performance, because writing data to
memory is faster than writing it to a disk. The process of closing an output file forces any
unsaved data that remains in the buffer to be written to the file.

In Python you use the file object’s close method to close a file. For example, the following
statement closes the file that is associated with customer_file:

customer_file.close()

Program 7-1 shows a complete Python program that opens an output file, writes data to it,
and then closes it.

Program 7-1 (file_write.py)

1 # This program writes three lines of data
2 # to a file.
3 def main():
4 # Open a file named philosophers.txt.
5 outfile = open('philosophers.txt', 'w')
6
7 # Write the names of three philosphers
8 # to the file.
9 outfile.write('John Locke\n')

10 outfile.write('David Hume\n')
11 outfile.write('Edmund Burke\n')
12
13 # Close the file.
14 outfile.close()
15
16 # Call the main function.
17 main()

246 Chapter 7 Files and Exceptions

Line 5 opens the file philosophers.txt using the 'w' mode. (This causes the file to be
created, and opens it for writing.) It also creates a file object in memory and assigns that
object to the outfile variable.

The statements in lines 9 through 11 write three strings to the file. Line 9 writes the string
'John Locke\n', line 10 writes the string 'David Hume\n', and line 11 writes the string
'Edmund Burke\n'. Line 14 closes the file. After this program runs, the three items shown
in Figure 7-5 will be written to the philosophers.txt file.

Figure 7-6 Contents of philosophers.txt in Notepad

Notice that each of the strings written to the file end with \n, which you will recall is the
newline escape sequence. The \n not only separates the items that are in the file, but also
causes each of them to appear in a separate line when viewed in a text editor. For example,
Figure 7-6 shows the philosophers.txt file as it appears in Notepad.

John Locke\nDavid Hume\nEdmund Burke\n

Beginning
of the file

End of
the file

Figure 7-5 Contents of the file philosophers.txt

Reading Data From a File
If a file has been opened for reading (using the 'r' mode) you can use the file object’s read
method to read its entire contents into memory. When you call the read method, it returns
the file’s contents as a string. For example, Program 7-2 shows how we can use the read
method to read the contents of the philosophers.txt file that we created earlier.

Program 7-2 (file_read.py)

1 # This program reads and displays the contents
2 # of the philosophers.txt file.
3 def main():
4 # Open a file named philosophers.txt.
5 infile = open('philosophers.txt', 'r')
6
7 # Read the file's contents.
8 file_contents = infile.read()
9

7.1 Introduction to File Input and Output 247

10 # Close the file.
11 infile.close()
12
13 # Print the data that was read into
14 # memory.
15 print(file_contents)
16
17 # Call the main function.
18 main()

Program Output

John Locke
David Hume
Edmund Burke

Figure 7-7 The file_contents variable references the string that was read from the file

John Locke\nDavid Hume\nEdmund Burke\nfile_contents

The statement in line 5 opens the philosophers.txt file for reading, using the 'r' mode.
It also creates a file object and assigns the object to the infile variable. Line 8 calls
the infile.read method to read the file’s contents. The file’s contents are read into
memory as a string and assigned to the file_contents variable. This is shown in Figure 7-7.
Then the statement in line 15 prints the string that is referenced by the variable.

Although the read method allows you to easily read the entire contents of a file with one
statement, many programs need to read and process the items that are stored in a file one
at a time. For example, suppose a file contains a series of sales amounts, and you need to
write a program that calculates the total of the amounts in the file. The program would
read each sale amount from the file and add it to an accumulator.

In Python you can use the readline method to read a line from a file. (A line is simply a
string of characters that are terminated with a \n.) The method returns the line as a string,
including the \n. Program 7-3 shows how we can use the readline method to read the
contents of the philosophers.txt file, one line at a time.

Program 7-3 (line_read.py)

1 # This program reads the contents of the
2 # philosophers.txt file one line at a time.
3 def main():
4 # Open a file named philosophers.txt.
5 infile = open('philosophers.txt', 'r')
6
7 # Read three lines from the file.
8 line1 = infile.readline()
9 line2 = infile.readline()

10 line3 = infile.readline()
(program continues)

248 Chapter 7 Files and Exceptions

Program 7-3 (continues)

11
12 # Close the file.
13 infile.close()
14
15 # Print the data that was read into
16 # memory.
17 print(line1)
18 print(line2)
19 print(line3)
20
21 # Call the main function.
22 main()

Program Output

John Locke

David Hume

Edmund Burke

Figure 7-8 Initial read position

Figure 7-9 Read position advanced to the next line

John Locke\nDavid Hume\nEdmund Burke\n

Read position

Before we examine the code, notice that a blank line is displayed after each line in the out-
put. This is because each item that is read from the file ends with a newline character (\n).
Later you will learn how to remove the newline character.

The statement in line 5 opens the philosophers.txt file for reading, using the 'r' mode. It
also creates a file object and assigns the object to the infile variable. When a file is opened
for reading, a special value known as a read position is internally maintained for that file. A
file’s read position marks the location of the next item that will be read from the file. Initially,
the read position is set to the beginning of the file. After the statement in line 5 executes, the
read position for the philosophers.txt file will be positioned as shown in Figure 7-8.

John Locke\nDavid Hume\nEdmund Burke\n

Read position

The statement in line 8 calls the infile.readline method to read the first line from the file.
The line, which is returned as a string, is assigned to the line1 variable. After this statement
executes the line1 variable will be assigned the string 'John Locke\n'. In addition, the file’s
read position will be advanced to the next line in the file, as shown in Figure 7-9.

7.1 Introduction to File Input and Output 249

Then the statement in line 9 reads the next line from the file and assigns it to the line2
variable. After this statement executes the line2 variable will reference the string 'David
Hume\n'. The file’s read position will be advanced to the next line in the file, as shown in
Figure 7-10.

Figure 7-10 Read position advanced to the next line

Figure 7-11 Read position advanced to the end of the file

Figure 7-12 The strings referenced by the line1, line2, and line3 variables

John Locke\nDavid Hume\nEdmund Burke\n

Read position

John Locke\nDavid Hume\nEdmund Burke\n

Read position

John Locke\nline1

line2 David Hume\n

line3 Edmund Burke\n

Then the statement in line 10 reads the next line from the file and assigns it to the line3
variable. After this statement executes the line3 variable will reference the string 'Edmund
Burke\n'. After this statement executes, the read position will be advanced to the end of
the file, as shown in Figure 7-11. Figure 7-12 shows the line1, line2, and line3 variables
and the strings they reference after these statements have executed.

NOTE: If the last line in a file is not terminated with a \n, the readline method will
return the line without a \n.

Concatenating a Newline to a String
Program 7-1 wrote three string literals to a file, and each string literal ended with a \n
escape sequence. In most cases, the data items that are written to a file are not string liter-
als, but values in memory that are referenced by variables. This would be the case in a pro-
gram that prompts the user to enter data, and then writes that data to a file.

When a program writes data that has been entered by the user to a file, it is usually necessary
to concatenate a \n escape sequence to the data before writing it. This ensures that each piece
of data is written to a separate line in the file. Program 7-4 demonstrates how this is done.

The statement in line 13 closes the file. The statements in lines 17 through 19 display the
contents of the line1, line2, and line3 variables.

250 Chapter 7 Files and Exceptions

Program 7-4 (write_names.py)

1 # This program gets three names from the user
2 # and writes them to a file.
3
4 def main():
5 # Get three names.
6 print('Enter the names of three friends.')
7 name1 = input('Friend #1: ')
8 name2 = input('Friend #2: ')
9 name3 = input('Friend #3: ')

10
11 # Open a file named friends.txt.
12 myfile = open('friends.txt', 'w')
13
14 # Write the names to the file.
15 myfile.write(name1 + '\n')
16 myfile.write(name2 + '\n')
17 myfile.write(name3 + '\n')
18
19 # Close the file.
20 myfile.close()
21 print('The names were written to friends.txt.')
22
23 # Call the main function.
24 main()

Program Output (with input shown in bold)

Enter the names of three friends.
Friend #1: Joe e
Friend #2: Rose e
Friend #3: Geri e
The names were written to friends.txt.

Figure 7-13 The friends.txt file

Joe\nRose\nGeri\n

Lines 7 through 9 prompt the user to enter three names, and those names are assigned to the
variables name1, name2, and name3. Line 12 opens a file named friends.txt for writing.
Then, lines 15 through 17 write the names entered by the user, each with '\n' concatenated to
it. As a result, each name will have the \n escape sequence added to it when written to the file.
Figure 7-13 shows the contents of the file with the names entered by the user in the sample run.

Reading a String and Stripping the Newline from It
Sometimes complications are caused by the \n that appears at the end of the strings that are
returned from the readline method. For example, did you notice in the sample output of

7.1 Introduction to File Input and Output 251

Program 7-3 that a blank line is printed after each line of output? This is because each of the
strings that are printed in lines 17 through 19 end with a \n escape sequence. When the
strings are printed, the \n causes an extra blank line to appear.

The \n serves a necessary purpose inside a file: it separates the items that are stored in the
file. However, in many cases you want to remove the \n from a string after it is read from
a file. Each string in Python has a method named rstrip that removes, or “strips,” specific
characters from the end of a string. (It is named rstrip because it strips characters from
the right side of a string.) The following code shows an example of how the rstrip method
can be used.

name = 'Joanne Manchester\n'
name = name.rstrip('\n')

The first statement assigns the string 'Joanne Manchester\n' to the name variable.
(Notice that the string ends with the \n escape sequence.) The second statement calls the
name.rstrip('\n') method. The method returns a copy of the name string without the
trailing \n. This string is assigned back to the name variable. The result is that the trailing
\n is stripped away from the name string.

Program 7-5 is another program that reads and displays the contents of the philoso-
phers.txt file. This program uses the rstrip method to strip the \n from the strings that
are read from the file before they are displayed on the screen. As a result, the extra blank
lines do not appear in the output.

Program 7-5 (strip_newline.py)

1 # This program reads the contents of the
2 # philosophers.txt file one line at a time.
3 def main():
4 # Open a file named philosophers.txt.
5 infile = open('philosophers.txt', 'r')
6
7 # Read three lines from the file.
8 line1 = infile.readline()
9 line2 = infile.readline()
10 line3 = infile.readline()
11
12 # Strip the \n from each string.
13 line1 = line1.rstrip('\n')
14 line2 = line2.rstrip('\n')
15 line3 = line3.rstrip('\n')
16
17 # Close the file.
18 infile.close()
19
20 # Print the data that was read into
21 # memory.
22 print(line1) (program continues)

252 Chapter 7 Files and Exceptions

Program 7-5 (continued)

23 print(line2)
24 print(line3)
25
26 # Call the main function.
27 main()

Program Output

John Locke
David Hume
Edmund Burke

Appending Data to an Existing File
When you use the 'w' mode to open an output file and a file with the specified filename
already exists on the disk, the existing file will be erased and a new empty file with the same
name will be created. Sometimes you want to preserve an existing file and append new data
to its current contents. Appending data to a file means writing new data to the end of the
data that already exists in the file.

In Python you can use the 'a' mode to open an output file in append mode, which means
the following.

• If the file already exists, it will not be erased. If the file does not exist, it will be
created.

• When data is written to the file, it will be written at the end of the file’s current
contents.

For example, assume the file friends.txt contains the following names, each in a sepa-
rate line:

Joe
Rose
Geri

The following code opens the file and appends additional data to its existing contents.

myfile = open('friends.txt', 'a')
myfile.write('Matt\n')
myfile.write('Chris\n')
myfile.write('Suze\n')
myfile.close()

After this program runs, the file friends.txt will contain the following data:

Joe
Rose
Geri
Matt
Chris
Suze

7.1 Introduction to File Input and Output 253

Writing and Reading Numeric Data
Strings can be written directly to a file with the write method, but numbers must be con-
verted to strings before they can be written. Python has a built-in function named str that
converts a value to a string. For example, assuming the variable num is assigned the value
99, the expression str(num) will return the string '99'.

Program 7-6 shows an example of how you can use the str function to convert a number
to a string, and write the resulting string to a file.

Program 7-6 (write_numbers.py)

1 # This program demonstrates how numbers
2 # must be converted to strings before they
3 # are written to a text file.
4
5 def main():
6 # Open a file for writing.
7 outfile = open('numbers.txt', 'w')
8
9 # Get three numbers from the user.
10 num1 = int(input('Enter a number: '))
11 num2 = int(input('Enter another number: '))
12 num3 = int(input('Enter another number: '))
13
14 # Write the numbers to the file.
15 outfile.write(str(num1) + '\n')
16 outfile.write(str(num2) + '\n')
17 outfile.write(str(num3) + '\n')
18
19 # Close the file.
20 outfile.close()
21 print('Data written to numbers.txt')
22
23 # Call the main function.
24 main()

Program Output (with input shown in bold)

Enter a number: 22 e
Enter another number: 14 e
Enter another number: �99 e
Data written to numbers.txt

The statement in line 7 opens the file numbers.txt for writing. Then the statements in lines
10 through 12 prompt the user to enter three numbers, which are assigned to the variables
num1, num2, and num3.

Take a closer look at the statement in line 15, which writes the value referenced by num1 to
the file:

outfile.write(str(num1) + '\n')

254 Chapter 7 Files and Exceptions

The expression str(num1) + '\n' converts the value referenced by num1 to a string and
concatenates the \n escape sequence to the string. In the program’s sample run, the user
entered 22 as the first number, so this expression produces the string '22\n'. As a result,
the string '22\n' is written to the file.

Lines 16 and 17 perform the similar operations, writing the values referenced by num2 and
num3 to the file. After these statements execute, the values shown in Figure 7-14 will be
written to the file. Figure 7-15 shows the file viewed in Notepad.

Figure 7-14 Contents of the numbers.txt file

22\n14\n-99\n

Figure 7-15 The numbers.txt file viewed in Notepad

When you read numbers from a text file, they are always read as strings. For example, sup-
pose a program uses the following code to read the first line from the numbers.txt file that
was created by Program 7-6:

1 infile = open('numbers.txt', 'r')
2 value = infile.readline()
3 infile.close()

The statement in line 2 uses the readline method to read a line from the file. After this
statement executes, the value variable will reference the string '22\n'. This can cause a
problem if we intend to perform math with the value variable, because you cannot perform
math on strings. In such a case you must convert the string to a numeric type.

Recall from Chapter 2 that Python provides the built-in function int to convert a string to
an integer, and the built-in function float to convert a string to a floating-point number.
For example, we could modify the code previously shown as follows:

1 infile = open('numbers.txt', 'r')
2 string_input = infile.readline()
3 value = int(string_input)
4 infile.close()

The statement in line 2 reads a line from the file and assigns it to the string_input variable.
As a result, string_input will reference the string '22\n'. Then the statement in line 3 uses
the int function to convert string_input to an integer, and assigns the result to value.
After this statement executes, the value variable will reference the integer 22. (Both the int
and float functions ignore any \n at the end of the string that is passed as an argument.)

7.1 Introduction to File Input and Output 255

This code demonstrates the steps involved in reading a string from a file with the readline
method, and then converting that string to an integer with the int function. In many sit-
uations, however, the code can be simplified. A better way is to read the string from the file
and convert it in one statement, as shown here:

1 infile = open('numbers.txt', 'r')
2 value = int(infile.readline())
3 infile.close()

Notice in line 2 that a call to the readline method is used as the argument to the int func-
tion. Here’s how the code works: the readline method is called, and it returns a string.
That string is passed to the int function, which converts it to an integer. The result is
assigned to the value variable.

Program 7-7 shows a more complete demonstration. The contents of the numbers.txt file
are read, converted to integers, and added together.

Program 7-7 (read_numbers.py)

1 # This program demonstrates how numbers that are
2 # read from a file must be converted from strings
3 # before they are used in a math operation.
4
5 def main():
6 # Open a file for reading.
7 infile = open('numbers.txt', 'r')
8
9 # Read three numbers from the file.
10 num1 = int(infile.readline())
11 num2 = int(infile.readline())
12 num3 = int(infile.readline())
13
14 # Close the file.
15 infile.close()
16
17 # Add the three numbers.
18 total = num1 + num2 + num3
19
20 # Display the numbers and their total.
21 print('The numbers are:', num1, num2, num3)
22 print('Their total is:', total)
23
24 # Call the main function.
25 main()

Program Output

The numbers are: 22 14 -99
Their total is: -63

256 Chapter 7 Files and Exceptions

Checkpoint

7.1 What is an output file?

7.2 What is an input file?

7.3 What three steps must be taken by a program when it uses a file?

7.4 In general, what are the two types of files? What is the difference between these
two types of files?

7.5 What are the two types of file access? What is the difference between these two?

7.6 When writing a program that performs an operation on a file, what two file-
associated names do you have to work with in your code?

7.7 If a file already exists what happens to it if you try to open it as an output file
(using the 'w' mode)?

7.8 What is the purpose of opening a file?

7.9 What is the purpose of closing a file?

7.10 What is a file’s read position? Initially, where is the read position when an input
file is opened?

7.11 In what mode do you open a file if you want to write data to it, but you do not
want to erase the file’s existing contents? When you write data to such a file, to
what part of the file is the data written?

7.2 Using Loops to Process Files

CONCEPT: Files usually hold large amounts of data, and programs typically use a
loop to process the data in a file.

Although some programs use files to store only small amounts of data, files are typically
used to hold large collections of data. When a program uses a file to write or read a large
amount of data, a loop is typically involved. For example, look at the code in Program 7-8.
This program gets sales amounts for a series of days from the user and writes those
amounts to a file named sales.txt. The user specifies the number of days of sales data he
or she needs to enter. In the sample run of the program, the user enters sales amounts for
five days. Figure 7-16 shows the contents of the sales.txt file containing the data entered
by the user in the sample run.

Program 7-8 (write_sales.py)

1 # This program prompts the user for sales amounts
2 # and writes those amounts to the sales.txt file.
3
4 def main():
5 # Get the number of days.
6 num_days = int(input('For how many days do ' + \
7 'you have sales? '))
8

VideoNote
Using Loops to
Process Files

7.2 Using Loops to Process Files 257

9 # Open a new file named sales.txt.
10 sales_file = open('sales.txt', 'w')
11
12 # Get the amount of sales for each day and write
13 # it to the file.
14 for count in range(1, num_days + 1):
15 # Get the sales for a day.
16 sales = float(input('Enter the sales for day #' + \
17 str(count) + ': '))
18
19 # Write the sales amount to the file.
20 sales_file.write(str(sales) + '\n')
21
22 # Close the file.
23 sales_file.close()
24 print('Data written to sales.txt.')
25
26 # Call the main function.
27 main()

Program Output (with input shown in bold)

For how many days do you have sales? 5 e
Enter the sales for day #1: 1000.0 e
Enter the sales for day #2: 2000.0 e
Enter the sales for day #3: 3000.0 e
Enter the sales for day #4: 4000.0 e
Enter the sales for day #5: 5000.0 e
Data written to sales.txt.

Figure 7-16 Contents of the sales.txt file

1000.0\n2000.0\n3000.0\n4000.0\n5000.0\n

Reading a File with a Loop and Detecting
the End of the File
Quite often a program must read the contents of a file without knowing the number of
items that are stored in the file. For example, the sales.txt file that was created by
Program 7-8 can have any number of items stored in it, because the program asks the
user for the number of days that he or she has sales amounts for. If the user enters 5 as
the number of days, the program gets 5 sales amounts and writes them to the file. If the
user enters 100 as the number of days, the program gets 100 sales amounts and writes
them to the file.

This presents a problem if you want to write a program that processes all of the items in
the file, however many there are. For example, suppose you need to write a program that
reads all of the amounts in the sales.txt file and calculates their total. You can use a loop

258 Chapter 7 Files and Exceptions

to read the items in the file, but you need a way of knowing when the end of the file has
been reached.

In Python, the readline method returns an empty string ('') when it has attempted to
read beyond the end of a file. This makes it possible to write a while loop that determines
when the end of a file has been reached. Here is the general algorithm, in pseudocode:

Open the file
Use readline to read the first line from the file
While the value returned from readline is not an empty string:

Process the item that was just read from the file
Use readline to read the next line from the file.

Close the file

Figure 7-17 shows this algorithm in a flowchart.

NOTE: In this algorithm we call the readline method just before entering the while
loop. The purpose of this method call is to get the first line in the file, so it can be
tested by the loop. This initial read operation is called a priming read.

Figure 7-17 General logic for detecting the end of a file

Use readline to read the
first line from the file.

Did readline return an
empty string?

Process the item that was
just read from the file.

Use readline to read the
next line from the file.

No
(False)

Yes (True)

Open the file.

Close the file.

7.2 Using Loops to Process Files 259

Program 7-9 demonstrates how this can be done in code. The program reads and displays
all of the values in the sales.txt file.

Program 7-9 (read_sales.py)

1 # This program reads all of the values in
2 # the sales.txt file.
3
4 def main():
5 # Open the sales.txt file for reading.
6 sales_file = open('sales.txt', 'r')
7
8 # Read the first line from the file, but
9 # don't convert to a number yet. We still

10 # need to test for an empty string.
11 line = sales_file.readline()
12
13 # As long as an empty string is not returned
14 # from readline, continue processing.
15 while line != '':
16 # Convert line to a float.
17 amount = float(line)
18
19 # Format and display the amount.
20 print(format(amount, '.2f'))
21
22 # Read the next line.
23 line = sales_file.readline()
24
25 # Close the file.
26 sales_file.close()
27
28 # Call the main function.
29 main()

Program Output

1000.00
2000.00
3000.00
4000.00
5000.00

Using Python’s for Loop to Read Lines
In the previous example you saw how the readline method returns an empty string
when the end of the file has been reached. Most programming languages provide a
similar technique for detecting the end of a file. If you plan to learn programming

260 Chapter 7 Files and Exceptions

languages other than Python, it is important for you to know how to construct this
type of logic.

The Python language also allows you to write a for loop that automatically reads line in a
file without testing for any special condition that signals the end of the file. The loop does
not require a priming read operation, and it automatically stops when the end of the file
has been reached. When you simply want to read the lines in a file, one after the other, this
technique is simpler and more elegant than writing a while loop that explicitly tests for an
end of the file condition. Here is the general format of the loop:

for variable in file_object:
statement
statement
etc.

In the general format, variable is the name of a variable and file_object is a vari-
able that references a file object. The loop will iterate once for each line in the file. The first
time the loop iterates, variable will reference the first line in the file (as a string), the second
time the loop iterates, variable will reference the second line, and so forth. Program 7-10
provides a demonstration. It reads and displays all of the items in the sales.txt file.

Program 7-10 (read_sales2.py)

1 # This program uses the for loop to read
2 # all of the values in the sales.txt file.
3
4 def main():
5 # Open the sales.txt file for reading.
6 sales_file = open('sales.txt', 'r')
7
8 # Read all the lines from the file.
9 for line in sales_file:

10 # Convert line to a float.
11 amount = float(line)
12 # Format and display the amount.
13 print(format(amount, '.2f'))
14
15 # Close the file.
16 sales_file.close()
17
18 # Call the main function.
19 main()

Program Output

1000.00
2000.00
3000.00
4000.00
5000.00

260 Chapter 7 Files and Exceptions

7.2 Using Loops to Process Files 261

In the Spotlight:
Working with Files
Kevin is a freelance video producer who makes TV commercials for local businesses. When he
makes a commercial, he usually films several short videos. Later, he puts these short videos
together to make the final commercial. He has asked you to write the following two programs.

1. A program that allows him to enter the running time (in seconds) of each short video
in a project. The running times are saved to a file.

2. A program that reads the contents of the file, displays the running times, and then dis-
plays the total running time of all the segments.

Here is the general algorithm for the first program, in pseudocode:

Get the number of videos in the project.
Open an output file.
For each video in the project:

Get the video’s running time.
Write the running time to the file.

Close the file.

Program 7-11 shows the code for the first program.

Program 7-11 (save_running_times.py)

1 # This program saves a sequence of video running times
2 # to the video_times.txt file.
3
4 def main():
5 # Get the number of videos in the project.
6 num_videos = int(input('How many videos are in the project? '))
7
8 # Open the file to hold the running times.
9 video_file = open('video_times.txt', 'w')

10
11 # Get each video's running time and write
12 # it to the file.
13 print('Enter the running times for each video.')
14 for count in range(1, num_videos + 1):
15 run_time = float(input('Video #' + str(count) + ': '))
16 video_file.write(str(run_time) + '\n')
17
18 # Close the file.
19 video_file.close()
20 print('The times have been saved to video_times.txt.')
21
22 # Call the main function.
23 main()

(program output continues)

262 Chapter 7 Files and Exceptions

Program 7-11 (continued)

Program Output (with input shown in bold)

How many videos are in the project? 6 e
Enter the running times for each video.
Video #1: 24.5 e
Video #2: 12.2 e
Video #3: 14.6 e
Video #4: 20.4 e
Video #5: 22.5 e
Video #6: 19.3 e
The times have been saved to video_times.txt.

Here is the general algorithm for the second program:

Initialize an accumulator to 0.
Initialize a count variable to 0.
Open the input file.
For each line in the file:

Convert the line to a floating-point number. (This is the running time for a video.)
Add one to the count variable. (This keeps count of the number of videos.)
Display the running time for this video.
Add the running time to the accumulator.

Close the file.
Display the contents of the accumulator as the total running time.

Program 7-12 shows the code for the second program.

Program 7-12 (read_running_times.py)

1 # This program the values in the video_times.txt
2 # file and calculates their total.
3
4 def main():
5 # Open the video_times.txt file for reading.
6 video_file = open('video_times.txt', 'r')
7
8 # Initialize an accumulator to 0.0.
9 total = 0.0

10
11 # Initialize a variable to keep count of the videos.
12 count = 0
13
14 print('Here are the running times for each video:')
15
16 # Get the values from the file and total them.
17 for line in video_file:
18 # Convert a line to a float.
19 run_time = float(line)

7.3 Processing Records 263

20
21 # Add 1 to the count variable.
22 count += 1
23
24 # Display the time.
25 print('Video #', count, ': ', run_time, sep='')
26
27 # Add the time to total.
28 total += run_time
29
30 # Close the file.
31 video_file.close()
32
33 # Display the total of the running times.
34 print('The total running time is', total, 'seconds.')
35
36 # Call the main function.
37 main()

Program Output

Here are the running times for each video:
Video #1: 24.5
Video #2: 12.2
Video #3: 14.6
Video #4: 20.4
Video #5: 22.5
Video #6: 19.3
The total running time is 113.5 seconds.

Checkpoint

7.12 Write a short program that uses a for loop to write the numbers 1 through 10 to
a file.

7.13 What does it mean when the readline method returns an empty string?

7.14 Assume that the file data.txt exists and contains several lines of text. Write a
short program using the while loop that displays each line in the file.

7.15 Revise the program that you wrote for Checkpoint 7.14 to use the for loop
instead of the while loop.

7.3 Processing Records

CONCEPT: The data that is stored in a file is frequently organized in records. A record
is a complete set of data about an item, and a field is an individual piece of
data within a record.

264 Chapter 7 Files and Exceptions

When data is written to a file, it is often organized into records and fields. A record is a
complete set of data that describes one item, and a field is a single piece of data within a
record. For example, suppose we want to store data about employees in a file. The file will
contain a record for each employee. Each record will be a collection of fields, such as name,
ID number, and department. This is illustrated in Figure 7-18.

'Ingrid Virgo\n' '4587\n' 'Engineering\n'

Record

Name
field

Department
field

ID number
field

Figure 7-18 Fields in a record

Program 7-13 shows a simple example of how employee records can be written to a file.

Program 7-13 (save_emp_records.py)

1 # This program gets employee data from the user and
2 # saves it as records in the employee.txt file.
3
4 def main():
5 # Get the number of employee records to create.
6 num_emps = int(input('How many employee records ' + \
7 'do you want to create? '))
8
9 # Open a file for writing.

10 emp_file = open('employees.txt', 'w')
11
12 # Get each employee's data and write it to
13 # the file.
14 for count in range(1, num_emps + 1):

'Ingrid Virgo\n' 'Engineering\n''4587\n'

Record

'Julia Rich\n' 'Research\n''4588\n'

Record

'Greg Young\n' 'Marketing\n''4589\n'

Record

Figure 7-19 Records in a file

Each time you write a record to a sequential access file, you write the fields that make up the
record, one after the other. For example, Figure 7-19 shows a file that contains three employee
records. Each record consists of the employee’s name, ID number, and department.

7.3 Processing Records 265

15 # Get the data for an employee.
16 print('Enter data for employee #', count, sep='')
17 name = input('Name: ')
18 id_num = input('ID number: ')
19 dept = input('Department: ')
20
21 # Write the data as a record to the file.
22 emp_file.write(name + '\n')
23 emp_file.write(id_num + '\n')
24 emp_file.write(dept + '\n')
25
26 # Display a blank line.
27 print()
28
29 # Close the file.
30 emp_file.close()
31 print('Employee records written to employees.txt.')
32
33 # Call the main function.
34 main()

Program Output (with input shown in bold)

How many employee records do you want to create? 3 e
Enter the data for employee #1
Name: Ingrid Virgo e
ID number: 4587 e
Department: Engineering e

Enter the data for employee #2
Name: Julia Rich e
ID number: 4588 e
Department: Research e

Enter the data for employee #3
Name: Greg Young e
ID number: 4589 e
Department: Marketing e

Employee records written to employees.txt.

The statement in lines 6 and 7 prompts the user for the number of employee records that
he or she wants to create. Inside the loop, in lines 17 through 19, the program gets an
employee’s name, ID number, and department. These three items, which together make an
employee record, are written to the file in lines 22 through 24. The loop iterates once for
each employee record.

When we read a record from a sequential access file, we read the data for each field, one after
the other, until we have read the complete record. Program 7-14 demonstrates how we can
read the employee records in the employee.txt file.

266 Chapter 7 Files and Exceptions

Program 7-14 (read_emp_records.py)

1 # This program displays the records that are
2 # in the employees.txt file.
3
4 def main():
5 # Open the employees.txt file.
6 emp_file = open('employees.txt', 'r')
7
8 # Read the first line from the file, which is
9 # the name field of the first record.

10 name = emp_file.readline()
11
12 # If a field was read, continue processing.
13 while name != '':
14 # Read the ID number field.
15 id_num = emp_file.readline()
16
17 # Read the department field.
18 dept = emp_file.readline()
19
20 # Strip the newlines from the fields.
21 name = name.rstrip('\n')
22 id_num = id_num.rstrip('\n')
23 dept = dept.rstrip('\n')
24
25 # Display the record.
26 print('Name:', name)
27 print('ID:', id_num)
28 print('Dept:', dept)
29 print()
30
31 # Read the name field of the next record.
32 name = emp_file.readline()
33
34 # Close the file.
35 emp_file.close()
36
37 # Call the main function.
38 main()

Program Output

Name: Ingrid Virgo
ID: 4587
Dept: Engineering

7.3 Processing Records 267

Name: Julia Rich
ID: 4588
Dept: Research

Name: Greg Young
ID: 4589
Dept: Marketing

This program opens the file in line 6, and then in line 10 reads the first field of the first record.
This will be the first employee’s name. The while loop in line 13 tests the value to determine
whether it is an empty string. If it is not, then the loop iterates. Inside the loop, the program
reads the record’s second and third fields (the employee’s ID number and department), and dis-
plays them. Then, in line 32 the first field of the next record (the next employee’s name) is read.
The loop starts over and this process continues until there are no more records to read.

Programs that store records in a file typically require more capabilities than simply writing
and reading records. In the following In the Spotlight sections we will examine algorithms
for adding records to a file, searching a file for specific records, modifying a record, and
deleting a record.

In the Spotlight:
Adding and Displaying Records
Midnight Coffee Roasters, Inc. is a small company that imports raw coffee beans from
around the world and roasts them to create a variety of gourmet coffees. Julie, the owner
of the company, has asked you to write a series of programs that she can use to manage her
inventory. After speaking with her, you have determined that a file is needed to keep inven-
tory records. Each record should have two fields to hold the following data:

• Description—a string containing the name of the coffee
• Quantity in inventory—the number of pounds in inventory, as a floating-point number

Your first job is to write a program that can be used to add records to the file. Program
7-15 shows the code. Note that the output file is opened in append mode. Each time the
program is executed, the new records will be added to the file’s existing contents.

Program 7-15 (add_coffee_record.py)

1 # This program adds coffee inventory records to
2 # the coffee.txt file.
3
4 def main():
5 # Create a variable to control the loop.
6 another = 'y'

(program continues)

268 Chapter 7 Files and Exceptions

Program 7-15 (continued)

7
8 # Open the coffee.txt file in append mode.
9 coffee_file = open('coffee.txt', 'a')

10
11 # Add records to the file.
12 while another == 'y' or another == 'Y':
13 # Get the coffee record data.
14 print('Enter the following coffee data:')
15 descr = input('Description: ')
16 qty = int(input('Quantity (in pounds): '))
17
18 # Append the data to the file.
19 coffee_file.write(descr + '\n')
20 coffee_file.write(str(qty) + '\n')
21
22 # Determine whether the user wants to add
23 # another record to the file.
24 print('Do you want to add another record?')
25 another = input('Y = yes, anything else = no: ')
26
27 # Close the file.
28 coffee_file.close()
29 print('Data appended to coffee.txt.')
30
31 # Call the main function.
32 main()

Program Output (with input shown in bold)

Enter the following coffee data:
Description: Brazilian Dark Roast e
Quantity (in pounds): 18 e
Do you want to enter another record?
Y = yes, anything else = no: y e
Description: Sumatra Medium Roast e
Quantity (in pounds): 25 e
Do you want to enter another record?
Y = yes, anything else = no: n e
Data appended to coffee.txt.

Your next job is to write a program that displays all of the records in the inventory file. Program 7-16
shows the code.

Program 7-16 (show_coffee_records.py)

1 # This program displays the records in the
2 # coffee.txt file.

7.3 Processing Records 269

3
4 def main():
5 # Open the coffee.txt file.
6 coffee_file = open('coffee.txt', 'r')
7
8 # Read the first record's description field.
9 descr = coffee_file.readline()

10
11 # Read the rest of the file.
12 while descr != '':
13 # Read the quantity field.
14 qty = float(coffee_file.readline())
15
16 # Strip the \n from the description.
17 descr = descr.rstrip('\n')
18
19 # Display the record.
20 print('Description:', descr)
21 print('Quantity:', qty)
22
23 # Read the next description.
24 descr = coffee_file.readline()
25
26 # Close the file.
27 coffee_file.close()
28
29 # Call the main function.
30 main()

Program Output

Description: Brazilian Dark Roast
Quantity: 18.0
Description: Sumatra Medium Roast
Quantity: 25.0

In the Spotlight:
Searching for a Record
Julie has been using the first two programs that you wrote for her. She now has several
records stored in the coffee.txt file, and has asked you to write another program that she
can use to search for records. She wants to be able to enter a description and see a list of
all the records matching that description. Program 7-17 shows the code for the program.

270 Chapter 7 Files and Exceptions

Program 7-17 (search_coffee_records.py)

1 # This program allows the user to search the
2 # coffee.txt file for records matching a
3 # description.
4
5 def main():
6 # Create a bool variable to use as a flag.
7 found = False
8
9 # Get the search value.

10 search = input('Enter a description to search for: ')
11
12 # Open the coffee.txt file.
13 coffee_file = open('coffee.txt', 'r')
14
15 # Read the first record's description field.
16 descr = coffee_file.readline()
17
18 # Read the rest of the file.
19 while descr != '':
20 # Read the quantity field.
21 qty = float(coffee_file.readline())
22
23 # Strip the \n from the description.
24 descr = descr.rstrip('\n')
25
26 # Determine whether this record matches
27 # the search value.
28 if descr == search:
29 # Display the record.
30 print('Description:', descr)
31 print('Quantity:', qty)
32 print()
33 # Set the found flag to True.
34 found = True
35
36 # Read the next description.
37 descr = coffee_file.readline()
38
39 # Close the file.
40 coffee_file.close()
41
42 # If the search value was not found in the file
43 # display a message.
44 if not found:
45 print('That item was not found in the file.')

7.3 Processing Records 271

46
47 # Call the main function.
48 main()

Program Output (with input shown in bold)

Enter a description to search for: Sumatra Medium Roast e
Description: Sumatra Medium Roast
Quantity: 25.0

Program Output (with input shown in bold)

Enter a description to search for: Mexican Altura e

That item was not found in the file.

In the Spotlight:
Modifying Records
Julie is very happy with the programs that you have written so far. Your next job is to write
a program that she can use to modify the quantity field in an existing record. This will
allow her to keep the records up to date as coffee is sold or more coffee of an existing type
is added to inventory.

To modify a record in a sequential file, you must create a second temporary file. You copy
all of the original file’s records to the temporary file, but when you get to the record that is
to be modified, you do not write its old contents to the temporary file. Instead, you write
its new modified values to the temporary file. Then, you finish copying any remaining
records from the original file to the temporary file.

The temporary file then takes the place of the original file. You delete the original file and
rename the temporary file, giving it the name that the original file had on the computer’s
disk. Here is the general algorithm for your program.

Open the original file for input and create a temporary file for output.
Get the description of the record to be modified and the new value for the quantity.
Read the first description field from the original file.
While the description field is not empty:

Read the quantity field.
If this record’s description field matches the description entered:

Write the new data to the temporary file.
Else:

Write the existing record to the temporary file.
Read the next description field.

Close the original file and the temporary file.
Delete the original file.
Rename the temporary file, giving it the name of the original file.

272 Chapter 7 Files and Exceptions

Notice that at the end of the algorithm you delete the original file and then rename the tem-
porary file. The Python standard library’s os module provides a function named remove,
that deletes a file on the disk. You simply pass the name of the file as an argument to the
function. Here is an example of how you would delete a file named coffee.txt:

remove('coffee.txt')

The os module also provides a function named rename, that renames a file. Here is an
example of how you would use it to rename the file temp.txt to coffee.txt:

rename('temp.txt', 'coffee.txt')

Program 7-18 shows the code for the program.

Program 7-18 (modify_coffee_records.py)

1 # This program allows the user to modify the quantity
2 # in a record in the coffee.txt file.
3
4 import os # Needed for the remove and rename functions
5
6 def main():
7 # Create a bool variable to use as a flag.
8 found = False
9

10 # Get the search value and the new quantity.
11 search = input('Enter a description to search for: ')
12 new_qty = int(input('Enter the new quantity: '))
13
14 # Open the original coffee.txt file.
15 coffee_file = open('coffee.txt', 'r')
16
17 # Open the temporary file.
18 temp_file = open('temp.txt', 'w')
19
20 # Read the first record's description field.
21 descr = coffee_file.readline()
22
23 # Read the rest of the file.
24 while descr != '':
25 # Read the quantity field.
26 qty = float(coffee_file.readline())
27
28 # Strip the \n from the description.
29 descr = descr.rstrip('\n')
30
31 # Write either this record to the temporary file,
32 # or the new record if this is the one that is
33 # to be modified.
34 if descr == search:

7.3 Processing Records 273

35 # Write the modified record to the temp file.
36 temp_file.write(descr + '\n')
37 temp_file.write(str(new_qty) + '\n')
38
39 # Set the found flag to True.
40 found = True
41 else:
42 # Write the original record to the temp file.
43 temp_file.write(descr + '\n')
44 temp_file.write(str(qty) + '\n')
45
46 # Read the next description.
47 descr = coffee_file.readline()
48
49 # Close the coffee file and the temporary file.
50 coffee_file.close()
51 temp_file.close()
52
53 # Delete the original coffee.txt file.
54 os.remove('coffee.txt')
55
56 # Rename the temporary file.
57 os.rename('temp.txt', 'coffee.txt')
58
59 # If the search value was not found in the file
60 # display a message.
61 if found:
62 print('The file has been updated.')
63 else:
64 print('That item was not found in the file.')
65
66 # Call the main function.
67 main()

Program Output (with input shown in bold)

Enter a description to search for: Brazilian Dark Roast e
Enter the new quantity: 10 e
The file has been updated.

NOTE: When working with a sequential access file, it is necessary to copy the entire file
each time one item in the file is modified. As you can imagine, this approach is inefficient,
especially if the file is large. Other, more advanced techniques are available, especially
when working with direct access files, that are much more efficient. We do not cover
those advanced techniques in this book, but you will probably study them in later courses.

274 Chapter 7 Files and Exceptions

In the Spotlight:
Deleting Records
Your last task is to write a program that Julie can use to delete records from the
coffee.txt file. Like the process of modifying a record, the process of deleting a record
from a sequential access file requires that you create a second temporary file. You copy all
of the original file’s records to the temporary file, except for the record that is to be deleted.
The temporary file then takes the place of the original file. You delete the original file and
rename the temporary file, giving it the name that the original file had on the computer’s
disk. Here is the general algorithm for your program.

Open the original file for input and create a temporary file for output.
Get the description of the record to be deleted.
Read the description field of the first record in the original file.
While the description is not empty:

Read the quantity field.
If this record’s description field does not match the description entered:

Write the record to the temporary file.
Read the next description field.

Close the original file and the temporary file.
Delete the original file.
Rename the temporary file, giving it the name of the original file.

Program 7-19 shows the program’s code.

Program 7-19 (delete_coffee_record.py)

1 # This program allows the user to delete
2 # a record in the coffee.txt file.
3
4 import os # Needed for the remove and rename functions
5
6 def main():
7 # Create a bool variable to use as a flag.
8 found = False
9

10 # Get the coffee to delete.
11 search = input('Which coffee do you want to delete? ')
12
13 # Open the original coffee.txt file.
14 coffee_file = open('coffee.txt', 'r')
15
16 # Open the temporary file.
17 temp_file = open('temp.txt', 'w')
18
19 # Read the first record's description field.
20 descr = coffee_file.readline()
21

7.3 Processing Records 275

22 # Read the rest of the file.
23 while descr != '':
24 # Read the quantity field.
25 qty = float(coffee_file.readline())
26
27 # Strip the \n from the description.
28 descr = descr.rstrip('\n')
29
30 # If this is not the record to delete, then
31 # write it to the temporary file.
32 if descr != search:
33 # Write the record to the temp file.
34 temp_file.write(descr + '\n')
35 temp_file.write(str(qty) + '\n')
36
37 # Set the found flag to True.
38 found = True
39
40 # Read the next description.
41 descr = coffee_file.readline()
42
43 # Close the coffee file and the temporary file.
44 coffee_file.close()
45 temp_file.close()
46
47 # Delete the original coffee.txt file.
48 os.remove('coffee.txt')
49
50 # Rename the temporary file.
51 os.rename('temp.txt', 'coffee.txt')
52
53 # If the search value was not found in the file
54 # display a message.
55 if found:
56 print('The file has been updated.')
57 else:
58 print('That item was not found in the file.')
59
60 # Call the main function.
61 main()

Program Output (with input shown in bold)

Which coffee do you want to delete? Brazillian Dark Roast e
The file has been updated.

276 Chapter 7 Files and Exceptions

Checkpoint

7.16 What is a record? What is a field?

7.17 Describe the way that you use a temporary file in a program that modifies a
record in a sequential access file.

7.18 Describe the way that you use a temporary file in a program that deletes a record
from a sequential file.

7.4 Exceptions

CONCEPT: An exception is an error that occurs while a program is running, causing
the program to abruptly halt. You can use the try/except statement to
gracefully handle exceptions.

An exception is an error that occurs while a program is running. In most cases, an exception
causes a program to abruptly halt. For example, look at Program 7-20. This program gets two
numbers from the user and then divides the first number by the second number. In the sam-
ple running of the program, however, an exception occurred because the user entered 0 as the
second number. (Division by 0 causes an exception because it is mathematically impossible.)

Program 7-20 (division.py)

1 # This program divides a number by another number.
2
3 def main():
4 # Get two numbers.
5 num1 = int(input('Enter a number: '))
6 num2 = int(input('Enter another number: '))
7
8 # Divide num1 by num2 and display the result.
9 result = num1 / num2

10 print(num1, 'divided by', num2, 'is', result)
11
12 # Call the main function.
13 main()

Program Output (with input shown in bold)

Enter a number: 10 e
Enter another number: 0 e

NOTE: When working with a sequential access file, it is necessary to copy the entire file
each time one item in the file is deleted. As was previously mentioned, this approach is inef-
ficient, especially if the file is large. Other, more advanced techniques are available, espe-
cially when working with direct access files, that are much more efficient. We do not cover
those advanced techniques in this book, but you will probably study them in later courses.

7.4 Exceptions 277

Traceback (most recent call last):
File "C:\Python\division.py," line 13, in <module>

main()
File "C:\Python\division.py," line 9, in main

result = num1 / num2
ZeroDivisionError: integer division or modulo by zero

The lengthy error message that is shown in the sample run is called a traceback. The traceback
gives information regarding the line number(s) that caused the exception. (When an exception
occurs, programmers say that an exception was raised.) The last line of the error message shows
the name of the exception that was raised (ZeroDivisionError) and a brief description of the
error that caused the exception to be raised (integer division or modulo by zero).

You can prevent many exceptions from being raised by carefully coding your program. For
example, Program 7-21 shows how division by 0 can be prevented with a simple if statement.
Rather than allowing the exception to be raised, the program tests the value of num2, and dis-
plays an error message if the value is 0. This is an example of gracefully avoiding an exception.

Program 7-21 (division.py)

1 # This program divides a number by another number.
2
3 def main():
4 # Get two numbers.
5 num1 = int(input('Enter a number: '))
6 num2 = int(input('Enter another number: '))
7
8 # If num2 is not 0, divide num1 by num2
9 # and display the result.

10 if num2 != 0:
11 result = num1 / num2
12 print(num1, 'divided by', num2, 'is', result)
13 else:
14 print('Cannot divide by zero.')
15
16 # Call the main function.
17 main()

Program Output (with input shown in bold)

Enter a number: 10 e
Enter another number: 0 e
Cannot divide by zero.

Some exceptions cannot be avoided regardless of how carefully you write your program.
For example, look at Program 7-22. This program calculates gross pay. It prompts the user
to enter the number of hours worked and the hourly pay rate. It gets the user’s gross pay
by multiplying these two numbers and displays that value on the screen.

278 Chapter 7 Files and Exceptions

Program 7-22 (gross_pay1.py)

1 # This program calculates gross pay.
2
3 def main():
4 # Get the number of hours worked.
5 hours = int(input('How many hours did you work? '))
6
7 # Get the hourly pay rate.
8 pay_rate = float(input('Enter your hourly pay rate: '))
9

10 # Calculate the gross pay.
11 gross_pay = hours * pay_rate
12
13 # Display the gross pay.
14 print('Gross pay: $', format(gross_pay, ',.2f'), sep='')
15
16 # Call the main function.
17 main()

Program Output (with input shown in bold)

How many hours did you work? forty e

Traceback (most recent call last):
File "C:\Users\Tony\Documents\Books\Python\2nd Edition\Source

Code\Chapter 07\gross_pay1.py", line 17, in <module>
main()

File "C:\Users\Tony\Documents\Books\Python\2nd Edition\Source
Code\Chapter 07\gross_pay1.py", line 5, in main

hours = int(input('How many hours did you work? '))
ValueError: invalid literal for int() with base 10: 'forty'

Look at the sample running of the program. An exception occurred because the user entered
the string 'forty' instead of the number 40 when prompted for the number of hours
worked. Because the string 'forty' cannot be converted to an integer, the int() function
raised an exception in line 5, and the program halted. Look carefully at the last line of the
traceback message and you will see that the name of the exception is ValueError, and its
description is: invalid literal for int() with base 10: 'forty'.

Python, like most modern programming languages, allows you to write code that responds
to exceptions when they are raised, and prevents the program from abruptly crashing. Such
code is called an exception handler, and is written with the try/except statement. There
are several ways to write a try/except statement, but the following general format shows
the simplest variation:

try:
statement
statement
etc.

7.4 Exceptions 279

except ExceptionName:
statement
statement
etc.

First the key word try appears, followed by a colon. Next, a code block appears which we
will refer to as the try suite. The try suite is one or more statements that can potentially
raise an exception.

After the try suite, an except clause appears. The except clause begins with the key
word except, optionally followed by the name of an exception, and ending with a colon.
Beginning on the next line is a block of statements that we will refer to as a handler.

When the try/except statement executes, the statements in the try suite begin to execute.
The following describes what happens next:

• If a statement in the try suite raises an exception that is specified by the
ExceptionName in an except clause, then the handler that immediately follows the
except clause executes. Then, the program resumes execution with the statement
immediately following the try/except statement.

• If a statement in the try suite raises an exception that is not specified by the
ExceptionName in an except clause, then the program will halt with a traceback
error message.

• If the statements in the try suite execute without raising an exception, then any
except clauses and handlers in the statement are skipped and the program resumes
execution with the statement immediately following the try/except statement.

Program 7-23 shows how we can write a try/except statement to gracefully respond to a
ValueError exception.

Program 7-23 (gross_pay2.py)

1 # This program calculates gross pay.
2
3 def main():
4 try:
5 # Get the number of hours worked.
6 hours = int(input('How many hours did you work? '))
7
8 # Get the hourly pay rate.
9 pay_rate = float(input('Enter your hourly pay rate: '))

10
11 # Calculate the gross pay.
12 gross_pay = hours * pay_rate
13
14 # Display the gross pay.
15 print('Gross pay: $', format(gross_pay, ',.2f'), sep='')
16 except ValueError:
17 print('ERROR: Hours worked and hourly pay rate must')
18 print('be valid integers.') (program continues)

280 Chapter 7 Files and Exceptions

Program 7-23 (continued)

19
20 # Call the main function.
21 main()

Program Output (with input shown in bold)

How many hours did you work? forty e
ERROR: Hours worked and hourly pay rate must
be valid integers.

Let’s look at what happened in the sample run. The statement in line 6 prompts the user
to enter the number of hours worked, and the user enters the string 'forty'. Because
the string 'forty' cannot be converted to an integer, the int() function raises a ValueError
exception. As a result, the program jumps immediately out of the try suite, to the except
ValueError clause in line 16 and begins executing the handler block that begins in line 17.
This is illustrated in Figure 7-20.

If this statement raises
aValueError
exception...

The program jumps to the
except ValueError
clause and executes its
handler.

This program calculates gross pay.

def main():
 try:
 # Get the number of hours worked.
 hours = int(input('How many hours did you work? '))

 # Get the hourly pay rate.
 pay_rate = float(input('Enter your hourly pay rate: '))

 # Calculate the gross pay.
 gross_pay = hours * pay_rate

 # Display the gross pay.
 print('Gross pay: $', format(gross_pay, ',.2f'), sep='')
 except ValueError:
 print('ERROR: Hours worked and hourly pay rate must')
 print('be valid integers.')

Call the main function.
main()

Figure 7-20 Handling an exception

Let’s look at another example, in Program 7-24. This program, which does not use excep-
tion handling, gets the name of a file from the user and then displays the contents of the
file. The program works as long as the user enters the name of an existing file. An excep-
tion will be raised, however, if the file specified by the user does not exist. This is what hap-
pened in the sample run.

Program 7-24 (display_file.py)

1 # This program displays the contents
2 # of a file.
3

7.4 Exceptions 281

4 def main():
5 # Get the name of a file.
6 filename = input('Enter a filename: ')
7
8 # Open the file.
9 infile = open(filename, 'r')

10
11 # Read the file's contents.
12 contents = infile.read()
13
14 # Display the file's contents.
15 print(contents)
16
17 # Close the file.
18 infile.close()
19
20 # Call the main function.
21 main()

Program Output (with input shown in bold)

Enter a filename: bad_file.txt e

Traceback (most recent call last):
File "C:\Python\display_file.py," line 21, in <module>
main()
File "C:\Python\display_file.py," line 9, in main
infile = open(filename, 'r')
IOError: [Errno 2] No such file or directory: 'bad_file.txt'

The statement in line 9 raised the exception when it called the open function. Notice in the
traceback error message that the name of the exception that occurred is IOError. This is
an exception that is raised when a file I/O operation fails. You can see in the traceback
message that the cause of the error was No such file or directory: 'bad_file.txt'.

Program 7-25 shows how we can modify Program 7-24 with a try/except statement
that gracefully responds to an IOError exception. In the sample run, assume the file
bad_file.txt does not exist.

Program 7-25 (display_file2.py)

1 # This program displays the contents
2 # of a file.
3
4 def main():
5 # Get the name of a file.
6 filename = input('Enter a filename: ')
7

(program continues)

282 Chapter 7 Files and Exceptions

Program 7-25 (continued)

8 try:
9 # Open the file.

10 infile = open(filename, 'r')
11
12 # Read the file's contents.
13 contents = infile.read()
14
15 # Display the file's contents.
16 print(contents)
17
18 # Close the file.
19 infile.close()
20 except IOError:
21 print('An error occurred trying to read')
22 print('the file', filename)
23
24 # Call the main function.
25 main()

Program Output (with input shown in bold)

Enter a filename: bad_file.txt e

An error occurred trying to read the file bad_file.txt

Let’s look at what happened in the sample run. When line 6 executed, the user entered
bad_file.txt, which was assigned to the filename variable. Inside the try suite, line 10
attempts to open the file bad_file.txt. Because this file does not exist, the statement raises
an IOError exception. When this happens, the program exits the try suite, skipping lines
11 through 19. Because the except clause in line 20 specifies the IOError exception, the
program jumps to the handler that begins in line 21.

Handling Multiple Exceptions
In many cases, the code in a try suite will be capable of throwing more than one type of
exception. In such a case, you need to write an except clause for each type of exception
that you want to handle. For example, Program 7-26 reads the contents of a file named
sales_data.txt. Each line in the file contains the sales amount for one month, and the
file has several lines. Here are the contents of the file:

24987.62
26978.97
32589.45
31978.47
22781.76
29871.44

Program 7-26 reads all of the numbers from the file and adds them to an accumulator variable.

7.4 Exceptions 283

Program 7-26 (sales_report1.py)

1 # This program displays the total of the
2 # amounts in the sales_data.txt file.
3
4 def main():
5 # Initialize an accumulator.
6 total = 0.0
7
8 try:
9 # Open the sales_data.txt file.

10 infile = open('sales_data.txt', 'r')
11
12 # Read the values from the file and
13 # accumulate them.
14 for line in infile:
15 amount = float(line)
16 total += amount
17
18 # Close the file.
19 infile.close()
20
21 # Print the total.
22 print(format(total, ',.2f'))
23
24 except IOError:
25 print('An error occured trying to read the file.')
26
27 except ValueError:
28 print('Non-numeric data found in the file.')
29
30 except:
31 print('An error occured.')
32
33 # Call the main function.
34 main()

The try suite contains code that can raise different types of exceptions. For example:

• The statement in line 10 can raise an IOError exception if the sales_data.txt file
does not exist. The for loop in line 14 can also raise an IOError exception if it
encounters a problem reading data from the file.

• The float function in line 15 can raise a ValueError exception if the line variable
references a string that cannot be converted to a floating-point number (an alphabetic
string, for example).

284 Chapter 7 Files and Exceptions

Notice that the try/except statement has three except clauses:

• The except clause in line 24 specifies the IOError exception. Its handler in line 25
will execute if an IOError exception is raised.

• The except clause in line 27 specifies the ValueError exception. Its handler in line
28 will execute if a ValueError exception is raised.

• The except clause in line 30 does not list a specific exception. Its handler in line 31
will execute if an exception that is not handled by the other except clauses is raised.

If an exception occurs in the try suite, the Python interpreter examines each of the except
clauses, from top to bottom, in the try/except statement. When it finds an except clause
that specifies a type that matches the type of exception that occurred, it branches to that
except clause. If none of the except clauses specifies a type that matches the exception,
the interpreter branches to the except clause in line 30.

Using One except Clause to Catch All Exceptions
The previous example demonstrated how multiple types of exceptions can be handled indi-
vidually in a try/except statement. Sometimes you might want to write a try/except
statement that simply catches any exception that is raised in the try suite, and, regardless
of the exception’s type, responds the same way. You can accomplish that in a try/except
statement by writing one except clause that does not specify a particular type of exception.
Program 7-27 shows an example:

Program 7-27 (sales_report2.py)

1 # This program displays the total of the
2 # amounts in the sales_data.txt file.
3
4 def main():
5 # Initialize an accumulator.
6 total = 0.0
7
8 try:
9 # Open the sales_data.txt file.

10 infile = open('sales_data.txt', 'r')
11
12 # Read the values from the file and
13 # accumulate them.
14 for line in infile:
15 amount = float(line)
16 total += amount
17
18 # Close the file.
19 infile.close()
20
21 # Print the total.
22 print(format(total, ',.2f'))

7.4 Exceptions 285

23 except:
24 print('An error occurred.')
25
26 # Call the main function.
27 main()

Notice that the try/except statement in this program has only one except clause, in line
23. The except clause does not specify an exception type, so any exception that occurs in
the try suite (lines 9 through 22) causes the program to branch to line 23, and then execute
the statement in line 24.

Displaying an Exception’s Default Error Message
When an exception is thrown, an object known as an exception object is created in mem-
ory. The exception object usually contains a default error message pertaining to the excep-
tion. (In fact, it is the same error message that you see displayed at the end of a traceback
when an exception goes unhandled.) When you write an except clause, you can optionally
assign the exception object to a variable, as shown here:

except ValueError as err:

This except clause catches ValueError exceptions. The expression that appears after the
except clause specifies that we are assigning the exception object to the variable err. (There
is nothing special about the name err. That is simply the name that we have chosen for the
examples. You can use any name that you wish.) After doing this, in the exception handler
you can pass the err variable to the print function to display the default error message that
Python provides for that type of error. Program 7-28 shows an example of how this is done.

Program 7-28 (gross_pay3.py)

1 # This program calculates gross pay.
2
3 def main():
4 try:
5 # Get the number of hours worked.
6 hours = int(input('How many hours did you work? '))
7
8 # Get the hourly pay rate.
9 pay_rate = float(input('Enter your hourly pay rate: '))

10
11 # Calculate the gross pay.
12 gross_pay = hours * pay_rate
13
14 # Display the gross pay.
15 print('Gross pay: $', format(gross_pay, ',.2f'), sep='')
16 except ValueError as err:
17 print(err)
18

(program continues)

286 Chapter 7 Files and Exceptions

Program 7-28 (continued)

19 # Call the main function.
20 main()

Program Output (with input shown in bold)

How many hours did you work? forty e
invalid literal for int() with base 10: 'forty'

When a ValueError exception occurs inside the try suite (lines 5 through 15), the program
branches to the except clause in line 16. The expression ValueError as err in line 16
causes the resulting exception object to be assigned to a variable named err. The statement
in line 17 passes the err variable to the print function, which causes the exception’s
default error message to be displayed.

If you want to have just one except clause to catch all the exceptions that are raised in a
try suite, you can specify Exception as the type. Program 7-29 shows an example.

Program 7-29 (sales_report3.py)

1 # This program displays the total of the
2 # amounts in the sales_data.txt file.
3
4 def main():
5 # Initialize an accumulator.
6 total = 0.0
7
8 try:
9 # Open the sales_data.txt file.

10 infile = open('sales_data.txt', 'r')
11
12 # Read the values from the file and
13 # accumulate them.
14 for line in infile:
15 amount = float(line)
16 total += amount
17
18 # Close the file.
19 infile.close()
20
21 # Print the total.
22 print(format(total, ',.2f'))
23 except Exception as err:
24 print(err)
25
26 # Call the main function.
27 main()

7.4 Exceptions 287

The else Clause
The try/except statement may have an optional else clause, which appears after all the
except clauses. Here is the general format of a try/except statement with an else clause:

try:
statement
statement
etc.

except ExceptionName:
statement
statement
etc.

else:
statement
statement
etc.

The block of statements that appears after the else clause is known as the else suite. The
statements in the else suite are executed after the statements in the try suite, only if no
exceptions were raised. If an exception is raised, the else suite is skipped. Program 7-30
shows an example.

Program 7-30 (sales_report4.py)

1 # This program displays the total of the
2 # amounts in the sales_data.txt file.
3
4 def main():
5 # Initialize an accumulator.
6 total = 0.0
7
8 try:
9 # Open the sales_data.txt file.

10 infile = open('sales_data.txt', 'r')
11
12 # Read the values from the file and
13 # accumulate them.
14 for line in infile:
15 amount = float(line)
16 total += amount
17
18 # Close the file.
19 infile.close()
20 except Exception as err:
21 print(err)
22 else:
23 # Print the total.
24 print(format(total, ',.2f'))

(program continues)

288 Chapter 7 Files and Exceptions

Program 7-30 (continued)

25
26 # Call the main function.
27 main()

In Program 7-30, the statement in line 24 is executed only if the statements in the try suite
(lines 9 through 19) execute without raising an exception.

The finally Clause
The try/except statement may have an optional finally clause, which must appear after
all the except clauses. Here is the general format of a try/except statement with a
finally clause:

try:
statement
statement
etc.

except ExceptionName:
statement
statement
etc.

finally:
statement
statement
etc.

The block of statements that appears after the finally clause is known as the finally suite.
The statements in the finally suite are always executed after the try suite has executed and
after any exception handlers have executed. The statements in the finally suite execute
whether an exception occurs or not. The purpose of the finally suite is to perform cleanup
operations, such as closing files or other resources. Any code that is written in the finally
suite will always execute, even if the try suite raises an exception.

What If an Exception Is Not Handled?
Unless an exception is handled, it will cause the program to halt. There are two possible
ways for a thrown exception to go unhandled. The first possibility is for the try/except
statement to contain no except clauses specifying an exception of the right type. The sec-
ond possibility is for the exception to be raised from outside a try suite. In either case, the
exception will cause the program to halt.

In this section you’ve seen examples of programs that can raise ZeroDivisionError excep-
tions, IOError exceptions, and ValueError exceptions. There are many different types of
exceptions that can occur in a Python program. When you are designing try/except state-
ments, one way you can learn about the exceptions that you need to handle is to consult
the Python documentation. It gives detailed information about each possible exception, and
the types of errors that can cause them to occur.

Review Questions 289

Another way that you can learn about the exceptions that can occur in a program is through
experimentation. You can run a program and deliberately perform actions that will cause
errors. By watching the traceback error messages that are displayed you will see the names of
the exceptions that are raised. You can then write except clauses to handle these exceptions.

Checkpoint

7.16 Briefly describe what an exception is.

7.17 If an exception is raised and the program does not handle it with a try/except
statement, what happens?

7.18 What type of exception does a program raise when it tries to open a nonexistent file?

7.19 What type of exception does a program raise when it uses the float function to
convert a non-numeric string to a number?

Review Questions
Multiple Choice

1. A file that data is written to is known as a(n)
a. input file
b. output file
c. sequential access file
d. binary file

2. A file that data is read from is known as a(n)
a. input file
b. output file
c. sequential access file
d. binary file

3. Before a file can be used by a program, it must be
a. formatted
b. encrypted
c. closed
d. opened

4. When a program is finished using a file, it should do this.
a. erase the file
b. open the file
c. close the file
d. encrypt the file

5. The contents of this type of file can be viewed in an editor such as Notepad.
a. text file
b. binary file
c. English file
d. human-readable file

290 Chapter 7 Files and Exceptions

6. This type of file contains data that has not been converted to text.
a. text file
b. binary file
c. Unicode file
d. symbolic file

7. When working with this type of file, you access its data from the beginning of the file
to the end of the file.
a. ordered access
b. binary access
c. direct access
d. sequential access

8. When working with this type of file, you can jump directly to any piece of data in the
file without reading the data that comes before it.
a. ordered access
b. binary access
c. direct access
d. sequential access

9. This is a small “holding section” in memory that many systems write data to before
writing the data to a file.
a. buffer
b. variable
c. virtual file
d. temporary file

10. This marks the location of the next item that will be read from a file.
a. input position
b. delimiter
c. pointer
d. read position

11. When a file is opened in this mode, data will be written at the end of the file’s existing
contents.
a. output mode
b. append mode
c. backup mode
d. read-only mode

12. This is a single piece of data within a record.
a. field
b. variable
c. delimiter
d. subrecord

13. When an exception is generated, it is said to have been __________.
a. built
b. raised
c. caught
d. killed

Review Questions 291

14. This is a section of code that gracefully responds to exceptions.
a. exception generator
b. exception manipulator
c. exception handler
d. exception monitor

15. You write this statement to respond to exceptions.
a. run/handle
b. try/except
c. try/handle
d. attempt/except

True or False

1. When working with a sequential access file, you can jump directly to any piece of data
in the file without reading the data that comes before it.

2. When you open a file that file already exists on the disk using the 'w' mode, the con-
tents of the existing file will be erased.

3. The process of opening a file is only necessary with input files. Output files are auto-
matically opened when data is written to them.

4. When an input file is opened, its read position is initially set to the first item in the file.

5. When a file that already exists is opened in append mode, the file’s existing contents
are erased.

6. If you do not handle an exception, it is ignored by the Python interpreter and the pro-
gram continues to execute.

7. You can have more than one except clause in a try/except statement.

8. The else suite in a try/except statement executes only if a statement in the try suite
raises an exception.

9. The finally suite in a try/except statement executes only if no exceptions are raised
by statements in the try suite.

Short Answer

1. Describe the three steps that must be taken when a file is used by a program.

2. Why should a program close a file when it’s finished using it?

3. What is a file’s read position? Where is the read position when a file is first opened for
reading?

4. If an existing file is opened in append mode, what happens to the file’s existing contents?

5. If a file does not exist and a program attempts to open it in append mode, what
happens?

Algorithm Workbench

1. Write a program that opens an output file with the filename my_name.txt, writes your
name to the file, and then closes the file.

2. Write a program that opens the my_name.txt file that was created by the program in
question 1, reads your name from the file, displays the name on the screen, and then
closes the file.

292 Chapter 7 Files and Exceptions

3. Write code that does the following: opens an output file with the filename
number_list.txt, uses a loop to write the numbers 1 through 100 to the file, and then
closes the file.

4. Write code that does the following: opens the number_list.txt file that was created
by the code you wrote in question 3, reads all of the numbers from the file and displays
them, and then closes the file.

5. Modify the code that you wrote in question 4 so it adds all of the numbers read from
the file and displays their total.

6. Write code that opens an output file with the filename number_list.txt, but does not
erase the file’s contents if it already exists.

7. A file exists on the disk named students.txt. The file contains several records,
and each record contains two fields: (1) the student’s name, and (2) the student’s
score for the final exam. Write code that deletes the record containing “John Perz”
as the student name.

8. A file exists on the disk named students.txt. The file contains several records, and
each record contains two fields: (1) the student’s name, and (2) the student’s score for
the final exam. Write code that changes Julie Milan’s score to 100.

9. What will the following code display?

try:

x = float('abc123')
print('The conversion is complete.')

except IOError:
print('This code caused an IOError.')

except ValueError:
print('This code caused a ValueError.')

print('The end.')

10. What will the following code display?

try:
x = float('abc123')
print(x)

except IOError:
print('This code caused an IOError.')

except ZeroDivisionError:
print('This code caused a ZeroDivisionError.')

except:
print('An error happened.')

print('The end.')

Programming Exercises
1. File Display

Assume that a file containing a series of integers is named numbers.txt and exists on the
computer’s disk. Write a program that displays all of the numbers in the file.

VideoNote
File Display

Programming Exercises 293

2. File Head Display

Write a program that asks the user for the name of a file. The program should display only
the first five lines of the file’s contents. If the file contains less than five lines, it should dis-
play the file’s entire contents.

3. Line Numbers

Write a program that asks the user for the name of a file. The program should display the
contents of the file with each line preceded with a line number followed by a colon. The
line numbering should start at 1.

4. Item Counter

Assume that a file containing a series of names (as strings) is named names.txt and exists
on the computer’s disk. Write a program that displays the number of names that are stored
in the file. (Hint: Open the file and read every string stored in it. Use a variable to keep a
count of the number of items that are read from the file.)

5. Sum of Numbers

Assume that a file containing a series of integers is named numbers.txt and exists on the
computer’s disk. Write a program that reads all of the numbers stored in the file and calcu-
lates their total.

6. Average of Numbers

Assume that a file containing a series of integers is named numbers.txt and exists on the
computer’s disk. Write a program that calculates the average of all the numbers stored in
the file.

7. Random Number File Writer

Write a program that writes a series of random numbers to a file. Each random number
should be in the range of 1 through 100. The application should let the user specify how
many random numbers the file will hold.

8. Random Number File Reader

This exercise assumes you have completed Programming Exercise 7, Random Number File
Writer. Write another program that reads the random numbers from the file, display the
numbers, and then display the following data:

• The total of the numbers
• The number of random numbers read from the file

9. Exception Handing

Modify the program that you wrote for Exercise 6 so it handles the following exceptions:

• It should handle any IOError exceptions that are raised when the file is opened and data
is read from it.

• It should handle any ValueError exceptions that are raised when the items that are read
from the file are converted to a number.

294 Chapter 7 Files and Exceptions

10. Golf Scores

The Springfork Amateur Golf Club has a tournament every weekend. The club president
has asked you to write two programs:

1. A program that will read each player’s name and golf score as keyboard input, and then
save these as records in a file named golf.txt. (Each record will have a field for the
player’s name and a field for the player’s score.)

2. A program that reads the records from the golf.txt file and displays them.

8.1 Sequences

CONCEPT: A sequence is an object that holds multiple items of data, stored one
after the other. You can perform operations on a sequence to examine
and manipulate the items stored in it.

A sequence is an object that contains multiple items of data. The items that are in a
sequence are stored one after the other. Python provides various ways to perform opera-
tions on the items that are stored in a sequence.

There are several different types of sequence objects in Python. In this chapter we will look
at two of the fundamental sequence types: lists and tuples. Both lists and tuples are
sequences that can hold various types of data. The difference between lists and tuples is sim-
ple: a list is mutable, which means that a program can change its contents, but a tuple is
immutable, which means that once it is created, its contents cannot be changed. We will
explore some of the operations that you may perform on these sequences, including ways
to access and manipulate their contents.

8.2 Introduction to Lists

CONCEPT: A list is an object that contains multiple data items. Lists are mutable,
which means that their contents can be changed during a program’s
execution. Lists are dynamic data structures, meaning that items may be
added to them or removed from them. You can use indexing, slicing, and
various methods to work with lists in a program.

Lists and Tuples8
TOPICS

8.1 Sequences
8.2 Introduction to Lists
8.3 List Slicing
8.4 Finding Items in Lists with the in Operator
8.5 List Methods and Useful Built-in Functions

8.6 Copying Lists
8.7 Processing Lists
8.8 Two-Dimensional Lists
8.9 Tuples

C
H

A
P

T
E

R

295

A list is an object that contains multiple data items. Each item that is stored in a list is called
an element. Here is a statement that creates a list of integers:

even_numbers = [2, 4, 6, 8, 10]

The items that are enclosed in brackets and separated by commas are the list elements. After
this statement executes, the variable even_numbers will reference the list, as shown in
Figure 8-1.

Molly Steven Will Alicia Adriananames

Figure 8-2 A list of strings

The following is another example:

names = ['Molly', 'Steven', 'Will', 'Alicia', 'Adriana']

This statement creates a list of five strings. After the statement executes, the name variable
will reference the list as shown in Figure 8-2.

2 4 6 8 10even_numbers

Figure 8-1 A list of integers

A list can hold items of different types, as shown in the following example:

info = ['Alicia', 27, 1550.87]

This statement creates a list containing a string, an integer, and a floating-point number. After
the statement executes, the info variable will reference the list as shown in Figure 8-3.

Figure 8-3 A list holding different types

You can use the print function to display an entire list, as shown here:

numbers = [5, 10, 15, 20]
print(numbers)

In this example, the print function will display the elements of the list like this:

[5, 10, 15, 20]

Python also has a built-in list() function that can convert certain types of objects to lists.
For example, recall from Chapter 5 that the range function returns an iterable, which is an
object that holds a series of values that can be iterated over. You can use a statement such
as the following to convert the range function’s iterable object to a list:

numbers = list(range(5))

Alicia 27 1550.87info

296 Chapter 8 Lists and Tuples

8.2 Introduction to Lists 297

When this statement executes, the following things happen:

• The range function is called with 5 passed as an argument. The function returns an
iterable containing the values 0, 1, 2, 3, 4.

• The iterable is passed as an argument to the list() function. The list() function
returns the list [0, 1, 2, 3, 4].

• The list [0, 1, 2, 3, 4] is assigned to the numbers variable.

Here is another example:

numbers = list(range(1, 10, 2))

Recall from Chapter 5 that when you pass three arguments to the range function, the
first argument is the starting value, the second argument is the ending limit, and the third
argument is the step value. This statement will assign the list [1, 3, 5, 7, 9] to the
numbers variable.

The Repetition Operator
You learned in Chapter 2 that the * symbol multiplies two numbers. However, when the
operand on the left side of the * symbol is a sequence (such as a list) and the operand on
the right side is an integer, it becomes the repetition operator. The repetition operator
makes multiple copies of a list and joins them all together. Here is the general format:

list * n

In the general format, list is a list and n is the number of copies to make. The following
interactive session demonstrates:

1 >>> numbers = [0] * 5 e

2 >>> print(numbers) e

3 [0, 0, 0, 0, 0]
4 >>>

Let’s take a closer look at each statement:

• In line 1 the expression [0] * 5 makes five copies of the list [0] and joins them all
together in a single list. The resulting list is assigned to the numbers variable.

• In line 2 the numbers variable is passed to the print function. The function’s output
is shown in line 3.

Here is another interactive mode demonstration:

1 >>> numbers = [1, 2, 3] * 3 e

2 >>> print(numbers) e

3 [1, 2, 3, 1, 2, 3, 1, 2, 3]
4 >>>

NOTE: Most programming languages allow you to create sequence structures
known as arrays, which are similar to lists, but are much more limited in their capabil-
ities. You cannot create traditional arrays in Python because lists serve the same pur-
pose and provide many more built-in capabilities.

Iterating over a List with the for Loop
In Section 8.1 we discussed techniques for accessing the individual characters in a string.
Many of the same programming techniques also apply to lists. For example, you can iter-
ate over a list with the for loop, as shown here:

numbers = [99, 100, 101, 102]
for n in numbers:

print(n)

If we run this code, it will print:

99
100
101
102

Indexing
Another way that you can access the individual elements in a list is with an index. Each ele-
ment in a list has an index that specifies its position in the list. Indexing starts at 0, so the
index of the first element is 0, the index of the second element is 1, and so forth. The index
of the last element in a list is 1 less than the number of elements in the list.

For example, the following statement creates a list with 4 elements:

my_list = [10, 20, 30, 40]

The indexes of the elements in this list are 0, 1, 2, and 3. We can print the elements of the
list with the following statement:

print(my_list[0], my_list[1], my_list[2], my_list[3])

The following loop also prints the elements of the list:

index = 0
while index < 4:

print(my_list[index])
index += 1

You can also use negative indexes with lists, to identify element positions relative to the end
of the list. The Python interpreter adds negative indexes to the length of the list to deter-
mine the element position. The index �1 identifies the last element in a list, �2 identifies
the next to last element, and so forth. The following code shows an example:

my_list = [10, 20, 30, 40]
print(my_list[-1], my_list[-2], my_list[-3], my_list[-4])

In this example, the print function will display:

40 30 20 10

An IndexError exception will be raised if you use an invalid index with a list. For exam-
ple, look at the following code:

This code will cause an IndexError exception.
my_list = [10, 20, 30, 40]

298 Chapter 8 Lists and Tuples

index = 0
while index < 5:

print(my_list[index])
index += 1

The last time that this loop iterates, the index variable will be assigned the value 5, which
is an invalid index for the list. As a result, the statement that calls the print function will
cause an IndexError exception to be raised.

The len Function
Python has a built-in function named len that returns the length of a sequence, such as a
list. The following code demonstrates:

my_list = [10, 20, 30, 40]
size = len(my_list)

The first statement assigns the list [10, 20, 30, 40] to the my_list variable. The sec-
ond statement calls the len function, passing the my_list variable as an argument.

The function returns the value 4, which is the number of elements in the list. This value is
assigned to the size variable.

The len function can be used to prevent an IndexError exception when iterating over a
list with a loop. Here is an example:

my_list = [10, 20, 30, 40]
index = 0
while index < len(my_list):

print(my_list[index])
index += 1

Lists Are Mutable
Lists in Python are mutable, which means their elements can be changed. Consequently, an
expression in the form list[index] can appear on the left side of an assignment operator.
The following code shows an example:

1 numbers = [1, 2, 3, 4, 5]
2 print(numbers)
3 numbers[0] = 99
4 print(numbers)

The statement in line 2 will display

[1, 2, 3, 4, 5]

The statement in line 3 assigns 99 to numbers[0]. This changes the first value in the list to
99. When the statement in line 4 executes, it will display

[99, 2, 3, 4, 5]

When you use an indexing expression to assign a value to a list element, you must use a
valid index for an existing element or an IndexError exception will occur. For example,

8.2 Introduction to Lists 299

look at the following code:

numbers = [1, 2, 3, 4, 5] # Create a list with 5 elements.
numbers[5] = 99 # This raises an exception!

The numbers list that is created in the first statement has five elements, with the indexes 0
through 4. The second statement will raise an IndexError exception because the numbers
list has no element at index 5.

If you want to use indexing expressions to fill a list with values, you have to create the list
first, as shown here:

1 # Create a list with 5 elements.
2 numbers = [0] * 5
3
4 # Fill the list with the value 99.
5 index = 0
6 while index < len(numbers):
7 numbers[index] = 99
8 index += 1

The statement in line 2 creates a list with five elements, each element assigned the value 0.
The loop in lines 6 through 8 then steps through the list elements, assigning 99 to each one.

Program 8-1 shows an example of how user input can be assigned to the elements of a list.
This program gets sales amounts from the user and assigns them to a list.

Program 8-1 (sales_list.py)

1 # The NUM_DAYS constant holds the number of
2 # days that we will gather sales data for.
3 NUM_DAYS = 5
4
5 def main():
6 # Create a list to hold the sales
7 # for each day.
8 sales = [0] * NUM_DAYS
9

10 # Create a variable to hold an index.
11 index = 0
12
13 print('Enter the sales for each day.')
14
15 # Get the sales for each day.
16 while index < NUM_DAYS:
17 print('Day #', index + 1, ': ', sep='', end='')
18 sales[index] = float(input())
19 index += 1
20

300 Chapter 8 Lists and Tuples

21 # Display the values entered.
22 print('Here are the values you entered:')
23 for value in sales:
24 print(value)
25
26 # Call the main function.
27 main()

Program Output (with input shown in bold)

Enter the sales for each day.
Day #1: 1000 e

Day #2: 2000 e

Day #3: 3000 e

Day #4: 4000 e

Day #5: 5000 e

Here are the values you entered:
1000.0
2000.0
3000.0
4000.0
5000.0

The statement in line 3 creates the variable NUM_DAYS, which is used as a constant for the
number of days. The statement in line 8 creates a list with five elements, with each element
assigned the value 0. Line 11 creates a variable named index and assigns the value 0 to it.

The loop in lines 16 through 19 iterates 5 times. The first time it iterates, index references the
value 0, so the statement in line 18 assigns the user’s input to sales[0]. The second time the
loop iterates, index references the value 1, so the statement in line 18 assigns the user’s input
to sales[1]. This continues until input values have been assigned to all the elements in the list.

Concatenating Lists
To concatenate means to join two things together. You can use the + operator to concate-
nate two lists. Here is an example:

list1 = [1, 2, 3, 4]
list2 = [5, 6, 7, 8]
list3 = list1 + list2

After this code executes, list1 and list2 remain unchanged, and list3 references the fol-
lowing list:

[1, 2, 3, 4, 5, 6, 7, 8]

The following interactive mode session also demonstrates list concatenation:

>>> girl_names = ['Joanne', 'Karen', 'Lori'] e

>>> boy_names = ['Chris', 'Jerry', 'Will'] e

>>> all_names = girl_names + boy_names e

8.2 Introduction to Lists 301

>>> print(all_names) e

['Joanne', 'Karen', 'Lori', 'Chris', 'Jerry', 'Will']

You can also use the += augmented assignment operator to concatenate one list to another.
Here is an example:

list1 = [1, 2, 3, 4]
list2 = [5, 6, 7, 8]
list1 += list2

The last statement appends list2 to list1. After this code executes, list2 remains
unchanged, but list1 references the following list:

[1, 2, 3, 4, 5, 6, 7, 8]

The following interactive mode session also demonstrates the += operator used for list con-
catenation:

>>> girl_names = ['Joanne', 'Karen', 'Lori'] e

>>> girl_names += ['Jenny', 'Kelly'] e

>>> print(girl_names) e

['Joanne', 'Karen', 'Lori', 'Jenny', 'Kelly']
>>>

NOTE: Keep in mind that you can concatenate lists only with other lists. If you try
to concatenate a list with something that is not a list, an exception will be raised.

Checkpoint

8.1 What will the following code display?

numbers = [1, 2, 3, 4, 5]
numbers[2] = 99
print(numbers)

8.2 What will the following code display?

numbers = list(range(3))
print(numbers)

8.3 What will the following code display?

numbers = [10] * 5
print(numbers)

8.4 What will the following code display?

numbers = list(range(1, 10, 2))
for n in numbers:

print(n)

8.5 What will the following code display?

numbers = [1, 2, 3, 4, 5]
print(numbers[-2])

8.6 How do you find the number of elements in a list?

302 Chapter 8 Lists and Tuples

8.3 List Slicing 303

8.7 What will the following code display?

numbers1 = [1, 2, 3]
numbers2 = [10, 20, 30]
numbers3 = numbers1 + numbers2
print(numbers1)
print(numbers2)
print(numbers3)

8.8 What will the following code display?

numbers1 = [1, 2, 3]
numbers2 = [10, 20, 30]
numbers2 += numbers1
print(numbers1)
print(numbers2)

8.3 List Slicing

CONCEPT: A slicing expression selects a range of elements from a sequences

You have seen how indexing allows you to select a specific element in a sequence.
Sometimes you want to select more than one element from a sequence. In Python, you can
write expressions that select subsections of a sequence, known as slices.

A slice is a span of items that are taken from a sequence. When you take a slice from a list,
you get a span of elements from within the list. To get a slice of a list, you write an expres-
sion in the following general format:

list_name[start : end]

In the general format, start is the index of the first element in the slice, and end is the index
marking the end of the slice. The expression returns a list containing a copy of the elements
from start up to (but not including) end. For example, suppose we create the following list:

days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday']

The following statement uses a slicing expression to get the elements from indexes 2 up to,
but not including, 5:

mid_days = days[2:5]

After this statement executes, the mid_days variable references the following list:

['Tuesday', 'Wednesday', 'Thursday']

You can quickly use the interactive mode interpreter to see how slicing works. For exam-
ple, look at the following session. (We have added line numbers for easier reference.)

1 >>> numbers = [1, 2, 3, 4, 5] e

2 >>> print(numbers) e

3 [1, 2, 3, 4, 5]

VideoNote
List Slicing

4 >>> print(numbers[1:3]) e

5 [2, 3]
6 >>>

Here is a summary of each line:

• In line 1 we created the list and [1, 2, 3, 4, 5] and assigned it to the numbers
variable.

• In line 2 we passed numbers as an argument to the print function. The print func-
tion displayed the list in line 3.

• In line 4 we sent the slice numbers[1:3] as an argument to the print function. The
print function displayed the slice in line 5.

If you leave out the start index in a slicing expression, Python uses 0 as the starting index.
The following interactive mode session shows an example:

1 >>> numbers = [1, 2, 3, 4, 5] e

2 >>> print(numbers) e

3 [1, 2, 3, 4, 5]
4 >>> print(numbers[:3]) e

5 [1, 2, 3]
6 >>>

Notice that line 4 sends the slice numbers[:3] as an argument to the print function. Because
the starting index was omitted, the slice contains the elements from index 0 up to 3.

If you leave out the end index in a slicing expression, Python uses the length of the list as
the end index. The following interactive mode session shows an example:

1 >>> numbers = [1, 2, 3, 4, 5] e

2 >>> print(numbers) e

3 [1, 2, 3, 4, 5]
4 >>> print(numbers[2:]) e

5 [3, 4, 5]
6 >>>

Notice that line 4 sends the slice numbers[2:] as an argument to the print function.
Because the ending index was omitted, the slice contains the elements from index 2 through
the end of the list.

If you leave out both the start and end index in a slicing expression, you get a copy of the
entire list. The following interactive mode session shows an example:

1 >>> numbers = [1, 2, 3, 4, 5] e

2 >>> print(numbers) e

3 [1, 2, 3, 4, 5]
4 >>> print(numbers[:]) e

5 [1, 2, 3, 4, 5]
6 >>>

The slicing examples we have seen so far get slices of consecutive elements from lists. Slicing
expressions can also have step value, which can cause elements to be skipped in the list. The
following interactive mode session shows an example of a slicing expression with a step
value:

304 Chapter 8 Lists and Tuples

1 >>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] e

2 >>> print(numbers) e

3 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
4 >>> print(numbers[1:8:2]) e

5 [2, 4, 6, 8]
6 >>>

In the slicing expression in line 4, the third number inside the brackets is the step value. A
step value of 2, as used in this example, causes the slice to contain every second element
from the specified range in the list.

You can also use negative numbers as indexes in slicing expressions to reference positions rel-
ative to the end of the list. Python adds a negative index to the length of a list to get the posi-
tion referenced by that index. The following interactive mode session shows an example:

1 >>> numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] e

2 >>> print(numbers) e

3 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
4 >>> print(numbers[-5:]) e

5 [6, 7, 8, 9, 10]
6 >>>

N0TE: Invalid indexes do not cause slicing expressions to raise an exception. For
example:

• If the end index specifies a position beyond the end of the list, Python will use the
length of the list instead.

• If the start index specifies a position before the beginning of the list, Python will
use 0 instead.

• If the start index is greater than the end index, the slicing expression will return an
empty list.

Checkpoint

8.9 What will the following code display?

numbers = [1, 2, 3, 4, 5]
my_list = numbers[1:3]
print(my_list)

8.10 What will the following code display?

numbers = [1, 2, 3, 4, 5]
my_list = numbers[1:]
print(my_list)

8.11 What will the following code display?

numbers = [1, 2, 3, 4, 5]
my_list = numbers[:1]
print(my_list)

8.3 List Slicing 305

8.12 What will the following code display?

numbers = [1, 2, 3, 4, 5]
my_list = numbers[:]
print(my_list)

8.13 What will the following code display?

numbers = [1, 2, 3, 4, 5]
my_list = numbers[-3:]
print(my_list)

8.4 Finding Items in Lists with the in Operator

CONCEPT: You can search for an item in a list using the in operator.

In Python you can use the in operator to determine whether an item is contained in a list.
Here is the general format of an expression written with the in operator to search for an
item in a list:

item in list

In the general format, item is the item for which you are searching, and list is a list. The
expression returns true if item is found in the list or false otherwise. Program 8-2 shows
an example.

Program 8-2 (in_list.py)

1 # This program demonstrates the in operator
2 # used with a list.
3
4 def main():
5 # Create a list of product numbers.
6 prod_nums = ['V475', 'F987', 'Q143', 'R688']
7
8 # Get a product number to search for.
9 search = input('Enter a product number: ')

10
11 # Determine whether the product number is in the list.
12 if search in prod_nums:
13 print(search, 'was found in the list.')
14 else:
15 print(search, 'was not found in the list.')
16
17 # Call the main function.
18 main()

306 Chapter 8 Lists and Tuples

Program Output (with input shown in bold)

Enter a product number: Q143 e

Q143 was found in the list.

Program Output (with input shown in bold)

Enter a product number: B000 e

B000 was not found in the list.

The program gets a product number from the user in line 9 and assigns it to the search
variable. The if statement in line 12 determines whether search is in the prod_nums list.

You can use the not in operator to determine whether an item is not in a list. Here is an
example:

if search not in prod_nums:
print(search, 'was not found in the list.')

else:
print(search, 'was found in the list.')

Checkpoint

8.14 What will the following code display?

names = ['Jim', 'Jill', 'John', 'Jasmine']
if 'Jasmine' not in names:

print('Cannot find Jasmine.')
else:

print("Jasmine's family:")
print(names)

8.5 List Methods and Useful Built-in Functions

CONCEPT: Lists have numerous methods that allow you to work with the elements
that they contain. Python also provides some built-in functions that are
useful for working with lists.

Lists have numerous methods that allow you to add elements, remove elements, change the
ordering of elements, and so forth. We will look at a few of these methods,1 which are listed
in Table 8-1.

The append Method

The append method is commonly used to add items to a list. The item that is passed as an
argument is appended to the end of the list’s existing elements. Program 8-3 shows an
example.

1We do not cover all of the list methods in this book. For a description of all of the list methods, see the Python
documentation at www.python.org.

8.5 List Methods and Useful Built-in Functions 307

www.python.org

Program 8-3 (list_append.py)

1 # This program demonstrates how the append
2 # method can be used to add items to a list.
3
4 def main():
5 # First, create an empty list.
6 name_list = []
7
8 # Create a variable to control the loop.
9 again = 'y'
10
11 # Add some names to the list.
12 while again == 'y':
13 # Get a name from the user.
14 name = input('Enter a name: ')
15
16 # Append the name to the list.
17 name_list.append(name)
18
19 # Add another one?
20 print('Do you want to add another name?')
21 again = input('y = yes, anything else = no: ')
22 print()
23

Table 8-1 A few of the list methods

Method Description

append(item) Adds item to the end of the list.

index(item) Returns the index of the first element whose value is equal to item.
A ValueError exception is raised if item is not found in the list.

insert(index, item) Inserts item into the list at the specified index. When an item is
inserted into a list, the list is expanded in size to accommodate the
new item. The item that was previously at the specified index, and all
the items after it, are shifted by one position toward the end of the list.
No exceptions will occur if you specify an invalid index. If you
specify an index beyond the end of the list, the item will be added to
the end of the list. If you use a negative index that specifies an
invalid position, the item will be inserted at the beginning of the list.

sort() Sorts the items in the list so they appear in ascending order (from
the lowest value to the highest value).

remove(item) Removes the first occurrence of item from the list. A ValueError
exception is raised if item is not found in the list.

reverse() Reverses the order of the items in the list.

308 Chapter 8 Lists and Tuples

24 # Display the names that were entered.
25 print('Here are the names you entered.')
26
27 for name in name_list:
28 print(name)
29
30 # Call the main function.
31 main()

Program Output (with input shown in bold)

Enter a name: Kathryn e

Do you want to add another name?
y = yes, anything else = no: y e

Enter a name: Chris e

Do you want to add another name?
y = yes, anything else = no: y e

Enter a name: Kenny e

Do you want to add another name?
y = yes, anything else = no: y e

Enter a name: Renee e

Do you want to add another name?
y = yes, anything else = no: n e

Here are the names you entered.
Kathryn
Chris
Kenny
Renee

Notice the statement in line 6:

name_list = []

This statement creates an empty list (a list with no elements) and assigns it to the
name_list variable. Inside the loop, the append method is called to build the list. The first
time the method is called, the argument passed to it will become element 0. The second time
the method is called, the argument passed to it will become element 1. This continues until
the user exits the loop.

The index Method

Earlier you saw how the in operator can be used to determine whether an item is in a list.
Sometimes you need to know not only whether an item is in a list, but where it is located.
The index method is useful in these cases. You pass an argument to the index method and
it returns the index of the first element in the list containing that item. If the item is not
found in the list, the method raises a ValueError exception. Program 8-4 demonstrates the
index method.

8.5 List Methods and Useful Built-in Functions 309

Program 8-4 (index_list.py)

1 # This program demonstrates how to get the
2 # index of an item in a list and then replace
3 # that item with a new item.
4
5 def main():
6 # Create a list with some items.
7 food = ['Pizza', 'Burgers', 'Chips']
8
9 # Display the list.
10 print('Here are the items in the food list:')
11 print(food)
12
13 # Get the item to change.
14 item = input('Which item should I change? ')
15
16 try:
17 # Get the item's index in the list.
18 item_index = food.index(item)
19
20 # Get the value to replace it with.
21 new_item = input('Enter the new value: ')
22
23 # Replace the old item with the new item.
24 food[item_index] = new_item
25
26 # Display the list.
27 print('Here is the revised list:')
28 print(food)
29 except ValueError:
30 print('That item was not found in the list.')
31
32 # Call the main function.
33 main()

Program Output (with input shown in bold)

Here are the items in the food list:
['Pizza', 'Burgers', 'Chips']
Which item should I change? Burgers e

Enter the new value: Pickles e

Here is the revised list:
['Pizza', 'Pickles', 'Chips']

The elements of the food list are displayed in line 11, and in line 14 the user is asked which
item he or she wants to change. Line 18 calls the index method to get the index of the item.

310 Chapter 8 Lists and Tuples

Line 21 gets the new value from the user, and line 24 assigns the new value to the element
holding the old value.

The insert Method

The insert method allows you to insert an item into a list at a specific position. You
pass two arguments to the insert method: an index specifying where the item should be
inserted and the item that you want to insert. Program 8-5 shows an example.

Program 8-5 (insert_list.py)

1 # This program demonstrates the insert method.
2
3 def main():
4 # Create a list with some names.
5 names = ['James', 'Kathryn', 'Bill']
6
7 # Display the list.
8 print('The list before the insert:')
9 print(names)
10
11 # Insert a new name at element 0.
12 names.insert(0, 'Joe')
13
14 # Display the list again.
15 print('The list after the insert:')
16 print(names)
17
18 # Call the main function.
19 main()

Program Output

The list before the insert:

['James', 'Kathryn', 'Bill']
The list after the insert:
['Joe', 'James', 'Kathryn', 'Bill']

The sort Method

The sort method rearranges the elements of a list so they appear in ascending order (from
the lowest value to the highest value). Here is an example:

my_list = [9, 1, 0, 2, 8, 6, 7, 4, 5, 3]
print('Original order:', my_list)
my_list.sort()
print('Sorted order:', my_list)

8.5 List Methods and Useful Built-in Functions 311

When this code runs it will display the following:

Original order: [9, 1, 0, 2, 8, 6, 7, 4, 5, 3]
Sorted order: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Here is another example:

my_list = ['beta', 'alpha', 'delta', 'gamma']
print('Original order:', my_list)
my_list.sort()
print('Sorted order:', my_list)

When this code runs it will display the following:

Original order: ['beta', 'alpha', 'delta', 'gamma']
Sorted order: ['alpha', 'beta', 'delta', 'gamma']

The remove Method

The remove method removes an item from the list. You pass an item to the method as an
argument and the first element containing that item is removed. This reduces the size of the
list by one element. All of the elements after the removed element are shifted one position
toward the beginning of the list. A ValueError exception is raised if the item is not found
in the list. Program 8-6 demonstrates the method.

Program 8-6 (remove_item.py)

1 # This program demonstrates how to use the remove
2 # method to remove an item from a list.
3
4 def main():
5 # Create a list with some items.
6 food = ['Pizza', 'Burgers', 'Chips']
7
8 # Display the list.
9 print('Here are the items in the food list:')
10 print(food)
11
12 # Get the item to change.
13 item = input('Which item should I remove? ')
14
15 try:
16 # Remove the item.
17 food.remove(item)
18
19 # Display the list.
20 print('Here is the revised list:')
21 print(food)
22
23 except ValueError:

312 Chapter 8 Lists and Tuples

24 print('That item was not found in the list.')
25
26 # Call the main function.
27 main()

Program Output (with input shown in bold)

Here are the items in the food list:
['Pizza', 'Burgers', 'Chips']
Which item should I remove? Burgers e

Here is the revised list:
['Pizza', 'Chips']

The reverse Method

The reverse method simply reverses the order of the items in the list. Here is an example:

my_list = [1, 2, 3, 4, 5]
print('Original order:', my_list)
my_list.reverse()
print('Reversed:', my_list)

This code will display the following:

Original order: [1, 2, 3, 4, 5]
Reversed: [5, 4, 3, 2, 1]

The del Statement
The remove method that you saw earlier removes a specific item from a list, if that item is
in the list. Some situations might require that you remove an element from a specific index,
regardless of the item that is stored at that index. This can be accomplished with the del
statement. Here is an example of how to use the del statement:

my_list = [1, 2, 3, 4, 5]
print('Before deletion:', my_list)
del my_list[2]
print('After deletion:', my_list)

This code will display the following:

Before deletion: [1, 2, 3, 4, 5]
After deletion: [1, 2, 4, 5]

The min and max Functions
Python has two built-in functions named min and max that work with sequences. The min
function accepts a sequence, such as a list, as an argument and returns the item that has the
lowest value in the sequence. Here is an example:

my_list = [5, 4, 3, 2, 50, 40, 30]
print('The lowest value is', min(my_list))

8.5 List Methods and Useful Built-in Functions 313

This code will display the following:

The lowest value is 2

The max function accepts a sequence, such as a list, as an argument and returns the item
that has the highest value in the sequence. Here is an example:

my_list = [5, 4, 3, 2, 50, 40, 30]
print('The highest value is', max(my_list))

This code will display the following:

The highest value is 50

Checkpoint

8.15 What is the difference between calling a list’s remove method and using the del
statement to remove an element?

8.16 How do you find the lowest and highest values in a list?

8.17 Assume the following statement appears in a program:

names = []

Which of the following statements would you use to add the string ‘Wendy’ to the
list at index 0? Why would you select this statement instead of the other?

a. names[0] = 'Wendy'
b. names.append('Wendy')

8.18 Describe the following list methods:

a. index
b. insert
c. sort
d. reverse

8.6 Copying Lists

CONCEPT: To make a copy of a list, you must copy the list’s elements.

Recall that in Python, assigning one variable to another variable simply makes both vari-
ables reference the same object in memory. For example, look at the following code:

Create a list.
list1 = [1, 2, 3, 4]
Assign the list to the list2 variable.
list2 = list1

After this code executes, both variables list1 and list2 will reference the same list in
memory. This is shown in Figure 8-4.

314 Chapter 8 Lists and Tuples

To demonstrate this, look at the following interactive session:

1 >>> list1 = [1, 2, 3, 4] e

2 >>> list2 = list1 e

3 >>> print(list1) e

4 [1, 2, 3, 4]
5 >>> print(list2) e

6 [1, 2, 3, 4]
7 >>> list1[0] = 99 e

8 >>> print(list1) e

9 [99, 2, 3, 4]
10 >>> print(list2) e

11 [99, 2, 3, 4]
12 >>>

Let’s take a closer look at each line:

• In line 1 we create a list of integers and assign the list to the list1 variable.
• In line 2 we assign list1 to list2. After this, both list1 and list2 reference the

same list in memory.
• In line 3 we print the list referenced by list1. The output of the print function is

shown in line 4.
• In line 5 we print the list referenced by list2. The output of the print function is

shown in line 6. Notice that it is the same as the output shown in line 4.
• In line 7 we change the value of list[0] to 99.
• In line 8 we print the list referenced by list1. The output of the print function is

shown in line 9. Notice that the first element is now 99.
• In line 10 we print the list referenced by list2. The output of the print function is

shown in line 11. Notice that the first element is 99.

In this interactive session, the list1 and list2 variables reference the same list in memory.

Suppose you wish to make a copy of the list, so that list1 and list2 reference two
separate but identical lists. One way to do this is with a loop that copies each element of
the list. Here is an example:

Create a list with values.
list1 = [1, 2, 3, 4]
Create an empty list.
list2 = []
Copy the elements of list1 to list2.
for item in list1:

list2.append(item)

1 2 3 4

list1

list2

Figure 8-4 list1 and list2 reference the same list

8.6 Copying Lists 315

After this code executes, list1 and list2 will reference two separate but identical lists. A
simpler and more elegant way to accomplish the same task is to use the concatenation oper-
ator, as shown here:

Create a list with values.
list1 = [1, 2, 3, 4]
Create a copy of list1.
list2 = [] + list1

The last statement in this code concatenates an empty list with list1 and assigns the
resulting list to list2. As a result, list1 and list2 will reference two separate but
identical lists.

8.7 Processing Lists
So far you’ve learned a wide variety of techniques for working with lists. Now we
will look at a number of ways that programs can process the data held in a list. For
example, the following In the Spotlight section shows how list elements can be used in
calculations.

In the Spotlight:
Using List Elements in a Math Expression
Megan owns a small neighborhood coffee shop, and she has six employees who work as
baristas (coffee bartenders). All of the employees have the same hourly pay rate. Megan has
asked you to design a program that will allow her to enter the number of hours worked by
each employee and then display the amounts of all the employees’ gross pay. You determine
that the program should perform the following steps:

1. For each employee: get the number of hours worked and store it in a list element.
2. For each list element: use the value stored in the element to calculate an employee’s

gross pay. Display the amount of the gross pay.

Program 8-7 shows the code for the program.

Program 8-7 (barista_pay.py)

1 # This program calculates the gross pay for
2 # each of Megan's baristas.
3
4 # NUM_EMPLOYEES is used as a constant for the
5 # size of the list.

316 Chapter 8 Lists and Tuples

6 NUM_EMPLOYEES = 6
7
8 def main():
9 # Create a list to hold employee hours.

10 hours = [0] * NUM_EMPLOYEES
11
12 # Get each employee's hours worked.
13 for index in range(NUM_EMPLOYEES):
14 print('Enter the hours worked by employee ', \
15 index + 1, ': ', sep='', end='')
16 hours[index] = float(input())
17
18 # Get the hourly pay rate.
19 pay_rate = float(input('Enter the hourly pay rate: '))
20
21 # Display each employee's gross pay.
22 for index in range(NUM_EMPLOYEES):
23 gross_pay = hours[index] * pay_rate
24 print('Gross pay for employee ', index + 1, ': $', \
25 format(gross_pay, ',.2f'), sep='')
26
27 # Call the main function.
28 main()

Program Output (with input shown in bold)

Enter the hours worked by employee 1: 10 e
Enter the hours worked by employee 2: 20 e
Enter the hours worked by employee 3: 15 e
Enter the hours worked by employee 4: 40 e
Enter the hours worked by employee 5: 20 e
Enter the hours worked by employee 6: 18 e
Enter the hourly pay rate: 12.75 e
Gross pay for employee 1: $127.50
Gross pay for employee 2: $255.00
Gross pay for employee 3: $191.25
Gross pay for employee 4: $510.00
Gross pay for employee 5: $255.00
Gross pay for employee 6: $229.50

NOTE: Suppose Megan’s business increases and she hires two additional baristas. This
would require you to change the program so it processes eight employees instead of six.
Because you used a constant for the list size, this is a simple modification—you just
change the statement in line 6 to read:

NUM_EMPLOYEES = 8

(continued)

8.7 Processing Lists 317

Because the NUM_EMPLOYEES constant is used in line 10 to create the list, the size of
the hours list will automatically become eight. Also, because you used the
NUM_EMPLOYEES constant to control the loop iterations in lines 13 and 22, the loops
will automatically iterate eight times, once for each employee.

Imagine how much more difficult this modification would be if you had not used a con-
stant to determine the list size. You would have to change each individual statement in
the program that refers to the list size. Not only would this require more work, but it
would open the possibility for errors. If you overlooked any one of the statements that
refer to the list size, a bug would occur.

Totaling the Values in a List
Assuming a list contains numeric values, to calculate the total of those values you use a loop
with an accumulator variable. The loop steps through the list, adding the value of each element
to the accumulator. Program 8-8 demonstrates the algorithm with a list named numbers.

Program 8-8 (total_list.py)

1 # This program calculates the total of the values
2 # in a list.
3
4 def main():
5 # Create a list.
6 numbers = [2, 4, 6, 8, 10]
7
8 # Create a variable to use as an accumulator.
9 total = 0
10
11 # Calculate the total of the list elements.
12 for value in numbers:
13 total += value
14
15 # Display the total of the list elements.
16 print('The total of the elements is', total)
17
18 # Call the main function.
19 main()

Program Output

The total of the elements is 30

Averaging the Values in a List
The first step in calculating the average of the values in a list is to get the total of
the values. You saw how to do that with a loop in the preceding section. The second

318 Chapter 8 Lists and Tuples

step is to divide the total by the number of elements in the list. Program 8-9 demon-
strates the algorithm.

Program 8-9 (average_list.py)

1 # This program calculates the average of the values
2 # in a list.
3
4 def main():
5 # Create a list.
6 scores = [2.5, 8.3, 6.5, 4.0, 5.2]
7
8 # Create a variable to use as an accumulator.
9 total = 0.0
10
11 # Calculate the total of the list elements.
12 for value in scores:
13 total += value
14
15 # Calculate the average of the elements.
16 average = total / len(scores)
17
18 # Display the total of the list elements.
19 print('The average of the elements is', average)
20
21 # Call the main function.
22 main()

Program Output

The average of the elements is 5.3

Passing a List as an Argument to a Function
Recall from Chapter 3 that as a program grows larger and more complex, it should be bro-
ken down into functions that each performs a specific task. This makes the program easier
to understand and to maintain.

You can easily pass a list as an argument to a function. This gives you the ability to put
many of the operations that you perform on a list in their own functions. When you need
to call these functions, you can pass the list as an argument.

Program 8-10 shows an example of a program that uses such a function. The func-
tion in this program accepts a list as an argument and returns the total of the list’s
elements.

8.7 Processing Lists 319

Program 8-10 (total_function.py)

1 # This program uses a function to calculate the
2 # total of the values in a list.
3
4 def main():
5 # Create a list.
6 numbers = [2, 4, 6, 8, 10]
7
8 # Display the total of the list elements.
9 print('The total is', get_total(numbers))
10
11 # The get_total function accepts a list as an
12 # argument returns the total of the values in
13 # the list.
14 def get_total(value_list):
15 # Create a variable to use as an accumulator.
16 total = 0
17
18 # Calculate the total of the list elements.
19 for num in value_list:
20 total += num
21
22 # Return the total.
23 return total
24
25 # Call the main function.
26 main()

Program Output

The total is 30

Returning a List from a Function
A function can return a reference to a list. This gives you the ability to write a function that
creates a list and adds elements to it, and then returns a reference to the list so other parts
of the program can work with it. The code in Program 8-11 shows an example. It uses a
function named get_values that gets a series of values from the user, stores them in a list,
and then returns a reference to the list.

Program 8-11 (return_list.py)

1 # This program uses a function to create a list.
2 # The function returns a reference to the list.
3

320 Chapter 8 Lists and Tuples

(program output continues)

4 def main():
5 # Get a list with values stored in it.
6 numbers = get_values()
7
8 # Display the values in the list.
9 print('The numbers in the list are:')
10 print(numbers)
11
12 # The get_values function gets a series of numbers
13 # from the user and stores them in a list. The
14 # function returns a reference to the list.
15 def get_values():
16 # Create an empty list.
17 values = []
18
19 # Create a variable to control the loop.
20 again = 'y'
21
22 # Get values from the user and add them to
23 # the list.
24 while again == 'y':
25 # Get a number and add it to the list.
26 num = int(input('Enter a number: '))
27 values.append(num)
28
29 # Want to do this again?
30 print('Do you want to add another number?')
31 again = input('y = yes, anything else = no: ')
32 print()
33
34 # Return the list.
35 return values
36
37 # Call the main function.
38 main()

Program Output (with input shown in bold)

Enter a number: 1 e
Do you want to add another number?
y = yes, anything else = no: y e

Enter a number: 2 e
Do you want to add another number?
y = yes, anything else = no: y e

Enter a number: 3 e
Do you want to add another number?
y = yes, anything else = no: y e

8.7 Processing Lists 321

Program Output (continued)

Enter a number: 4 e
Do you want to add another number?
y = yes, anything else = no: y e

Enter a number: 5 e
Do you want to add another number?
y = yes, anything else = no: n e

The numbers in the list are:
[1, 2, 3, 4, 5]

In the Spotlight:
Processing a List
Dr. LaClaire gives a series of exams during the semester in her chemistry class. At the end
of the semester she drops each student’s lowest test score before averaging the scores. She
has asked you to design a program that will read a student’s test scores as input, and cal-
culate the average with the lowest score dropped. Here is the algorithm that you developed:

Get the student’s test scores.
Calculate the total of the scores.
Find the lowest score.
Subtract the lowest score from the total. This gives the adjusted total.
Divide the adjusted total by 1 less than the number of test scores. This is the average.
Display the average.

Program 8-12 shows the code for the program, which is divided into three functions.
Rather than presenting the entire program at once, let’s first examine the main function and
then each additional function separately. Here is the main function:

Program 8-12 drop_lowest_score.py: main function

1 # This program gets a series of test scores and
2 # calculates the average of the scores with the
3 # lowest score dropped.
4
5 def main():
6 # Get the test scores from the user.
7 scores = get_scores()
8
9 # Get the total of the test scores.

10 total = get_total(scores)
11
12 # Get the lowest test score.

322 Chapter 8 Lists and Tuples

13 lowest = min(scores)
14
15 # Subtract the lowest score from the total.
16 total -= lowest
17
18 # Calculate the average. Note that we divide
19 # by 1 less than the number of scores because
20 # the lowest score was dropped.
21 average = total / (len(scores) - 1)
22
23 # Display the average.
24 print('The average, with the lowest score dropped', \
25 'is:', average)
26

Line 7 calls the get_scores function. The function gets the test scores from the user
and returns a reference to a list containing those scores. The list is assigned to the scores
variable.

Line 10 calls the get_total function, passing the scores list as an argument. The
function returns the total of the values in the list. This value is assigned to the total
variable.

Line 13 calls the built-in min function, passing the scores list as an argument. The func-
tion returns the lowest value in the list. This value is assigned to the lowest variable.

Line 16 subtracts the lowest test score from the total variable. Then, line 21 calculates the
average by dividing total by len(scores) – 1. (The program divides by len (scores) – 1
because the lowest test score was dropped.) Lines 24 and 25 display the average.

Next is the get_scores function.

Program 8-12 drop_lowest_score.py: get_scores function

27 # The get_scores function gets a series of test
28 # scores from the user and stores them in a list.
29 # A reference to the list is returned.
30 def get_scores():
31 # Create an empty list.
32 test_scores = []
33
34 # Create a variable to control the loop.
35 again = 'y'
36
37 # Get the scores from the user and add them to
38 # the list.
39 while again == 'y':
40 # Get a score and add it to the list.

(program continues)

8.7 Processing Lists 323

Program 8-12 (continued)

41 value = float(input('Enter a test score: '))
42 test_scores.append(value)
43
44 # Want to do this again?
45 print('Do you want to add another score?')
46 again = input('y = yes, anything else = no: ')
47 print()
48
49 # Return the list.
50 return test_scores
51

The get_scores function prompts the user to enter a series of test scores. As each score is
entered it is appended to a list. The list is returned in line 50. Next is the get_total function.

Program 8-12 drop_lowest_score.py: get_total function

52 # The get_total function accepts a list as an
53 # argument returns the total of the values in
54 # the list.
55 def get_total(value_list):
56 # Create a variable to use as an accumulator.
57 total = 0.0
58
59 # Calculate the total of the list elements.
60 for num in value_list:
61 total += num
62
63 # Return the total.
64 return total
65
66 # Call the main function.
67 main()

This function accepts a list as an argument. It uses an accumulator and a loop to calculate
the total of the values in the list. Line 64 returns the total.

Program Output (with input shown in bold)

Enter a test score: 92 e
Do you want to add another score?
Y = yes, anything else = no: y e

Enter a test score: 67 e
Do you want to add another score?
Y = yes, anything else = no: y e

324 Chapter 8 Lists and Tuples

Enter a test score: 75 e
Do you want to add another score?
Y = yes, anything else = no: y e

Enter a test score: 88 e
Do you want to add another score?
Y = yes, anything else = no: n e

The average, with the lowest score dropped is: 85.0

Working with Lists and Files
Some tasks may require you to save the contents of a list to a file so the data can be used at a
later time. Likewise, some situations may require you to read the data from a file into a list. For
example, suppose you have a file that contains a set of values that appear in random order and
you want to sort the values. One technique for sorting the values in the file would be to read
them into a list, call the list’s sort method, and then write the values in the list back to the file.

Saving the contents of a list to a file is a straightforward procedure. In fact, Python file
objects have a method named writelines that writes an entire list to a file. A drawback
to the writelines method, however, is that it does not automatically write a newline
('\n') at the end of each item. Consequently, each item is written to one long line in the
file. Program 8-13 demonstrates the method.

Program 8-13 (writelines.py)

1 # This program uses the writelines method to save
2 # a list of strings to a file.
3
4 def main():
5 # Create a list of strings.
6 cities = ['New York', 'Boston', 'Atlanta', 'Dallas']
7
8 # Open a file for writing.
9 outfile = open('cities.txt', 'w')

10
11 # Write the list to the file.
12 outfile.writelines(cities)
13
14 # Close the file.
15 outfile.close()
16
17 # Call the main function.
18 main()

8.7 Processing Lists 325

After this program executes, the cities.txt file will contain the following line:

New YorkBostonAtlantaDallas

An alternative approach is to use the for loop to iterate through the list, writing each ele-
ment with a terminating newline character. Program 8-14 shows an example.

Program 8-14 (write_list.py)

1 # This program saves a list of strings to a file.
2
3 def main():
4 # Create a list of strings.
5 cities = ['New York', 'Boston', 'Atlanta', 'Dallas']
6
7 # Open a file for writing.
8 outfile = open('cities.txt', 'w')
9

10 # Write the list to the file.
11 for item in cities:
12 outfile.write(item + '\n')
13
14 # Close the file.
15 outfile.close()
16
17 # Call the main function.
18 main()

After this program executes, the cities.txt file will contain the following lines:

New York
Boston
Atlanta
Dallas

File objects in Python have a method named readlines that returns a file’s contents as a
list of strings. Each line in the file will be an item in the list. The items in the list will include
their terminating newline character, which in many cases you will want to strip. Program
8-15 shows an example. The statement in line 8 reads the files contents into a list, and the
loop in lines 15 through 17 steps through the list, stripping the '\n' character from each
element.

Program 8-15 (read_list.py)

1 # This program reads a file's contents into a list.
2
3 def main():
4 # Open a file for reading.

326 Chapter 8 Lists and Tuples

5 infile = open('cities.txt', 'r')
6
7 # Read the contents of the file into a list.
8 cities = infile.readlines()
9

10 # Close the file.
11 infile.close()
12
13 # Strip the \n from each element.
14 index = 0
15 while index < len(cities):
16 cities[index] = cities[index].rstrip('\n')
17 index += 1
18
19 # Print the contents of the list.
20 print(cities)
21
22 # Call the main function.
23 main()

Program Output

['New York', 'Boston', 'Atlanta', 'Dallas']

Program 8-16 shows another example of how a list can be written to a file. In this exam-
ple, a list of numbers is written. Notice that in line 12, each item is converted to a string
with the str function, and then a '\n' is concatenated to it.

Program 8-16 (write_number_list.py)

1 # This program saves a list of numbers to a file.
2
3 def main():
4 # Create a list of numbers.
5 numbers = [1, 2, 3, 4, 5, 6, 7]
6
7 # Open a file for writing.
8 outfile = open('numberlist.txt', 'w')
9

10 # Write the list to the file.
11 for item in numbers:
12 outfile.write(str(item) + '\n')
13
14 # Close the file.
15 outfile.close()
16
17 # Call the main function.
18 main()

8.7 Processing Lists 327

When you read numbers from a file into a list, the numbers will have to be converted from
strings to a numeric type. Program 8-17 shows an example.

Program 8-17 (read_number_list.py)

1 # This program reads numbers from a file into a list.
2
3 def main():
4 # Open a file for reading.
5 infile = open('numberlist.txt', 'r')
6
7 # Read the contents of the file into a list.
8 numbers = infile.readlines()
9

10 # Close the file.
11 infile.close()
12
13 # Convert each element to an int.
14 index = 0
15 while index < len(numbers):
16 numbers[index] = int(numbers[index])
17 index += 1
18
19 # Print the contents of the list.
20 print(numbers)
21
22 # Call the main function.
23 main()

Program Output

[1, 2, 3, 4, 5, 6, 7]

8.8 Two-Dimensional Lists

CONCEPT: A two-dimensional list is a list that has other lists as its elements.

The elements of a list can be virtually anything, including other lists. To demonstrate, look
at the following interactive session:

1 >>> students = [['Joe', 'Kim'], ['Sam', 'Sue'], ['Kelly', 'Chris']] e

2 >>> print(students) e

3 [['Joe', 'Kim'], ['Sam', 'Sue'], ['Kelly', 'Chris']]
4 >>> print(students[0]) e

5 ['Joe', 'Kim']
6 >>> print(students[1]) e

328 Chapter 8 Lists and Tuples

8.8 Two-Dimensional Lists 329

7 ['Sam', 'Sue']
8 >>> print(students[2]) e

9 ['Kelly', 'Chris']
10 >>>

Let’s take a closer look at each line.

• Line 1 creates a list and assigns it to the students variable. The list has three ele-
ments, and each element is also a list. The element at students[0] is

['Joe', 'Kim']

The element at students[1] is
['Sam', 'Sue']

The element at students[2] is
['Kelly', 'Chris']

• Line 2 prints the entire students list. The output of the print function is shown in
line 3.

• Line 4 prints the students[0] element. The output of the print function is shown
in line 5.

• Line 6 prints the students[1] element. The output of the print function is shown
in line 7.

• Line 8 prints the students[2] element. The output of the print function is shown
in line 9.

Lists of lists are also known as nested lists, or two-dimensional lists. It is common to think
of a two-dimensional list as having rows and columns of elements, as shown in Figure 8-5.
This figure shows the two-dimensional list that was created in the previous interactive ses-
sion as having three rows and two columns. Notice that the rows are numbered 0, 1, and 2,
and the columns are numbered 0 and 1. There is a total of six elements in the list.

Row 0

Row 1

Row 2

Column 0 Column 1

'Joe' 'Kim'

'Sam' 'Sue'

'Kelly' 'Chris'

Figure 8-5 A two-dimensional list

Two-dimensional lists are useful for working with multiple sets of data. For example, sup-
pose you are writing a grade-averaging program for a teacher. The teacher has three stu-
dents, and each student takes three exams during the semester. One approach would be to
create three separate lists, one for each student. Each of these lists would have three ele-
ments, one for each exam score. This approach would be cumbersome, however, because
you would have to separately process each of the lists. A better approach would be to use
a two-dimensional list with three rows (one for each student) and three columns (one for
each exam score), as shown in Figure 8-6.

Figure 8-6 Two-dimensional list with six rows and five columns

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2

This row is for student 1.

This column
contains

 scores for
exam 1.

This column
contains

 scores for
exam 2.

This column
contains

 scores for
exam 3.

This row is for student 2.

This row is for student 3.

When processing the data in a two-dimensional list, you need two subscripts: one for the
rows and one for the columns. For example, suppose we create a two-dimensional list with
the following statement:

scores = [[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]

The elements in row 0 are referenced as follows:

scores[0][0]
scores[0][1]
scores[0][2]

The elements in row 1 are referenced as follows:

scores[1][0]
scores[1][1]
scores[1][2]

And, the elements in row 2 are referenced as follows:

scores[2][0]
scores[2][1]
scores[2][2]

Figure 8-7 illustrates the two-dimensional list, with the subscripts shown for each element.

Figure 8-7 Subscripts for each element of the scores list

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2

scores[0][0] scores[0][1] scores[0][2]

scores[1][0] scores[1][1] scores[1][2]

scores[2][0] scores[2][1] scores[2][2]

330 Chapter 8 Lists and Tuples

Programs that process two-dimensional lists typically do so with nested loops. Let’s look at
an example. Program 8-18 creates a two-dimensional list and assigns random numbers to
each of its elements.

Program 8-18 (random_numbers.py)

1 # This program assigns random numbers to
2 # a two-dimensional list.
3 import random
4
5 # Constants for rows and columns
6 ROWS = 3
7 COLS = 4
8
9 def main():

10 # Create a two-dimensional list.
11 values = [[0, 0, 0, 0],
12 [0, 0, 0, 0],
13 [0, 0, 0, 0]]
14
15 # Fill the list with random numbers.
16 for r in range(ROWS):
17 for c in range(COLS):
18 values[r][c] = random.randint(1, 100)
19
20 # Display the random numbers.
21 print(values)
22
23 # Call the main function.
24 main()

Program Output

[[4, 17, 34, 24], [46, 21, 54, 10], [54, 92, 20, 100]]

Let’s take a closer look at the program:

• Lines 6 and 7 create global constants for the number of rows and columns.
• Lines 11 through 13 create a two-dimensional list and assign it to the values vari-

able. We can think of the list as having three rows and four columns. Each element is
assigned the value 0.

• Lines 16 through 18 are a set of nested for loops. The outer loop iterates once for
each row, and it assigns the variable r the values 0 through 2. The inner loop iterates
once for each column, and it assigns the variable c the values 0 through 3. The state-
ment in line 18 executes once for each element of the list, assigning it a random inte-
ger in the range of 1 through 100.

• Line 21 displays the list’s contents.

8.8 Two-Dimensional Lists 331

Notice that the statement in line 21 passes the values list as an argument to the print
function; as a result, the entire list is displayed on the screen. Suppose we do not like the
way that the print function displays the list enclosed in brackets, with each nested list also
enclosed in brackets. For example, suppose we want to display each list element on a line
by itself, like this:

4
17
34
24
46
and so forth.

To accomplish that we can write a set of nested loops, such as

for r in range(ROWS):
for c in range(COLS):

print(values[r][c])

Checkpoint

8.19 Look at the following interactive session, in which a two-dimensional list is
created. How many rows and how many columns are in the list?

numbers = [[1, 2], [10, 20], [100, 200], [1000, 2000]]

8.20 Write a statement that creates a two-dimensional list with three rows and four
columns. Each element should be assigned the value 0.

8.21 Write a set of nested loops that display the contents of the numbers list shown in
Checkpoint question 8.19.

8.9 Tuples

CONCEPT: A tuple is an immutable sequence, which means that its contents cannot
be changed.

A tuple is a sequence, very much like a list. The primary difference between tuples and lists
is that tuples are immutable. That means that once a tuple is created, it cannot be changed.
When you create a tuple, you enclose its elements in a set of parentheses, as shown in the
following interactive session:

>>> my_tuple = (1, 2, 3, 4, 5) e

>>> print(my_tuple) e

(1, 2, 3, 4, 5)
>>>

332 Chapter 8 Lists and Tuples

8.9 Tuples 333

The first statement creates a tuple containing the elements 1, 2, 3, 4, and 5 and assigns it
to the variable my_tuple. The second statement sends my_tuple as an argument to the
print function, which displays its elements. The following session shows how a for loop
can iterate over the elements in a tuple:

>>> names = ('Holly', 'Warren', 'Ashley') e

>>> for n in names: e

print(n) e e

Holly
Warren
Ashley
>>>

Like lists, tuples support indexing, as shown in the following session:

>>> names = ('Holly', 'Warren', 'Ashley') e

>>> for i in range(len(names)): e

print(names[i]) e e

Holly
Warren
Ashley
>>>

In fact, tuples support all the same operations as lists, except those that change the contents
of the list. Tuples support the following:

• Subscript indexing (for retrieving element values only)
• Methods such as index
• Built-in functions such as len, min, and max
• Slicing expressions
• The in operator
• The + and * operators

Tuples do not support methods such as append, remove, insert, reverse, and sort.

NOTE: If you want to create a tuple with just one element, you must write a trailing
comma after the element’s value, as shown here:

my_tuple = (1,) # Creates a tuple with one element.

If you omit the comma, you will not create a tuple. For example, the following state-
ment simply assigns the integer value 1 to the value variable:

value = (1) # Creates an integer.

What’s the Point?
If the only difference between lists and tuples is immutability, you might wonder why tuples
exist. One reason that tuples exist is performance. Processing a tuple is faster than process-
ing a list, so tuples are good choices when you are processing lots of data and that data will
not be modified. Another reason is that tuples are safe. Because you are not allowed to
change the contents of a tuple, you can store data in one and rest assured that it will not
be modified (accidentally or otherwise) by any code in your program.

Additionally, there are certain operations in Python that require the use of a tuple. As you
learn more about Python, you will encounter tuples more frequently.

Converting Between Lists and Tuples
You can use the built-in list() function to convert a tuple to a list and the built-in tuple()
function to convert a list to a tuple. The following interactive session demonstrates:

1 >>> number_tuple = (1, 2, 3) e

2 >>> number_list = list(number_tuple) e

3 >>> print(number_list) e

4 [1, 2, 3]
5 >>> str_list = ['one', 'two', 'three'] e

6 >>> str_tuple = tuple(str_list) e

7 >>> print(str_tuple) e

8 ('one', 'two', 'three')
9 >>>

Here’s a summary of the statements:

• Line 1 creates a tuple and assigns it to the number_tuple variable.
• Line 2 passes number_tuple to the list() function. The function returns a list con-

taining the same values as number_tuple, and it is assigned to the number_list vari-
able.

• Line 3 passes number_list to the print function. The function’s output is shown in
line 4.

• Line 5 creates a list of strings and assigns it to the str_list variable.
• Line 6 passes str_list to the tuple() function. The function returns a tuple con-

taining the same values as str_list, and it is assigned to str_tuple.
• Line 7 passes str_tuple to the print function. The function’s output is shown in

line 8.

Checkpoint

8.22 What is the primary difference between a list and a tuple?

8.23 Give two reasons why tuples exist.

8.24 Assume that my_list references a list. Write a statement that converts it to a
tuple.

8.25 Assume that my_tuple references a tuple. Write a statement that converts it to a
list.

334 Chapter 8 Lists and Tuples

Review Questions
Multiple Choice

1. This term refers to an individual item in a list.
a. element
b. bin
c. cubby hole
d. slot

2. This is a number that identifies an item in a list.
a. element
b. index
c. bookmark
d. identifier

3. This is the first index in a list.
a. �1
b. 1
c. 0
d. The size of the list minus one

4. This is the last index in a list.
a. 1
b. 99
c. 0
d. The size of the list minus one

5. This will happen if you try to use an index that is out of range for a list.
a. a ValueError exception will occur
b. an IndexError exception will occur
c. The list will be erased and the program will continue to run.
d. Nothing—the invalid index will be ignored

6. This function returns the length of a list.
a. length
b. size
c. len
d. lengthof

7. When the * operator’s left operand is a list and its right operand is an integer, the
operator becomes this.
a. The multiplication operator
b. The repetition operator
c. The initialization operator
d. Nothing—the operator does not support those types of operands.

Review Questions 335

336 Chapter 8 Lists and Tuples

8. This list method adds an item to the end of an existing list.
a. add
b. add_to
c. increase
d. append

9. This removes an item at a specific index in a list.
a. The remove method
b. The delete method
c. The del statement
d. The kill method

10. Assume the following statement appears in a program:

mylist = []

Which of the following statements would you use to add the string 'Labrador' to the
list at index 0?
a. mylist[0] = 'Labrador'
b. mylist.insert(0, 'Labrador')
c. mylist.append('Labrador')
d. mylist.insert('Labrador', 0)

11. If you call the index method to locate an item in a list and the item is not found, this
happens.
a. A ValueError exception is raised
b. An InvalidIndex exception is raised
c. The method returns �1
d. Nothing happens. The program continues running at the next statement.

12. This built-in function returns the highest value in a list.
a. highest
b. max
c. greatest
d. best_of

13. This file object method returns a list containing the file’s contents.
a. to_list
b. getlist
c. readline
d. readlines

14. Which of the following statements creates a tuple?

a. values = [1, 2, 3, 4]
b. values = {1, 2, 3, 4}
c. values = (1)
d. values = (1,)

True or False

1. Lists in Python are immutable.

2. Tuples in Python are immutable.

3. The del statement deletes an item at a specified index in a list.

4. Assume list1 references a list. After the following statement executes, list1 and
list2 will reference two identical but separate lists in memory:

list2 = list1

5. A file object’s writelines method automatically writes a newline ('\n') after writing
each list item to the file.

6. You can use the + operator to concatenate two lists.

7. A list can be an element in another list.

8. You can remove an element from a tuple by calling the tuple’s remove method.

Short Answer

1. Look at the following statement:

numbers = [10, 20, 30, 40, 50]

a. How many elements does the list have?
b. What is the index of the first element in the list?
c. What is the index of the last element in the list?

2. Look at the following statement:

numbers = [1, 2, 3]

a. What value is stored in numbers[2]?
b. What value is stored in numbers[0]?
c. What value is stored in numbers[-1]?

3. What will the following code display?

values = [2, 4, 6, 8, 10]
print(values[1:3])

4. What does the following code display?

numbers = [1, 2, 3, 4, 5, 6, 7]
print(numbers[5:])

5. What does the following code display?

numbers = [1, 2, 3, 4, 5, 6, 7, 8]
print(numbers[-4:])

6. What does the following code display?

values = [2] * 5
print(values)

Review Questions 337

338 Chapter 8 Lists and Tuples

Algorithm Workbench

1. Write a statement that creates a list with the following strings: 'Einstein', 'Newton',
'Copernicus', and 'Kepler'.

2. Assume names references a list. Write a for loop that displays each element of the
list.

3. Assume the lists numbers1 has 100 elements and numbers2 is an empty list. Write
code that copies the values in numbers1 to numbers2.

4. Draw a flowchart showing the general logic for totaling the values in a list.

5. Write a function that accepts a list as an argument (assume the list contains integers)
and returns the total of the values in the list.

6. Assume the names variable references a list of strings. Write code that determines
whether 'Ruby' is in the names list. If it is, display the message 'Hello Ruby'.
Otherwise, display the message 'No Ruby'.

7. What will the following code print?

list1 = [40, 50, 60]
list2 = [10, 20, 30]
list3 = list1 + list2
print(list3)

8. Write a statement that creates a two-dimensional list with 5 rows and 3 columns. Then
write nested loops that get an integer value from the user for each element in the list.

Programming Exercises
1. Total Sales

Design a program that asks the user to enter a store’s sales for each day of the week. The
amounts should be stored in a list. Use a loop to calculate the total sales for the week and
display the result.

2. Lottery Number Generator

Design a program that generates a seven-digit lottery number. The program should gener-
ate seven random numbers, each in the range of 0 through 9, and assign each number to a
list element. (Random numbers were discussed in Chapter 6.) Then write another loop that
displays the contents of the list.

3. Rainfall Statistics

Design a program that lets the user enter the total rainfall for each of 12 months into a list.
The program should calculate and display the total rainfall for the year, the average monthly
rainfall, and the months with the highest and lowest amounts.

4. Number Analysis Program

Design a program that asks the user to enter a series of 20 numbers. The program should
store the numbers in a list and then display the following data:

• The lowest number in the list
• The highest number in the list
• The total of the numbers in the list
• The average of the numbers in the list

VideoNote
The Lottery Number
Generator Problem

5. Charge Account Validation

If you have downloaded the source code from this book’s companion Web site, you will
find a file named charge_accounts.txt in the Chapter 08 folder. This file has a list of a
company’s valid charge account numbers. Each account number is a seven-digit number,
such as 5658845.

Write a program that reads the contents of the file into a list. The program should then ask
the user to enter a charge account number. The program should determine whether the
number is valid by searching for it in the list. If the number is in the list, the program should
display a message indicating the number is valid. If the number is not in the list, the pro-
gram should display a message indicating the number is invalid.

(You can access the book’s companion Web site at www.pearsonhighered.com/gaddis.)

6. Driver’s License Exam

The local driver’s license office has asked you to create an application that grades the writ-
ten portion of the driver’s license exam. The exam has 20 multiple-choice questions. Here
are the correct answers:

1. B 6. A 11. B 16. C

2. D 7. B 12. C 17. C

3. A 8. A 13. D 18. B

4. A 9. C 14. A 19. D

5. C 10. D 15. D 20. A

Your program should store these correct answers in a list. The program should read the
student’s answers for each of the 20 questions from a text file and store the answers in
another list. (Create your own text file to test the application.) After the student’s answers
have been read from the file, the program should display a message indicating whether the
student passed or failed the exam. (A student must correctly answer 15 of the 20 questions
to pass the exam.) It should then display the total number of correctly answered questions,
the total number of incorrectly answered questions, and a list showing the question num-
bers of the incorrectly answered questions.

7. Name Search

If you have downloaded the source code from this book’s companion Web site, you will
find the following files in the Chapter 08 folder:

• GirlNames.txt—This file contains a list of the 200 most popular names given to girls
born in the United States from the year 2000 through 2009.

• BoyNames.txt—This file contains a list of the 200 most popular names given to boys
born in the United States from the year 2000 through 2009.

Write a program that reads the contents of the two files into two separate lists. The user
should be able to enter a boy’s name, a girl’s name, or both, and the application will dis-
play messages indicating whether the names were among the most popular.

(You can access the book’s companion Web site at www.pearsonhighered.com/gaddis.)

8. Population Data

If you have downloaded the source code from this book’s companion Web site, you will
find a file named USPopulation.txt in the Chapter 08 folder. The file contains the midyear

Programming Exercises 339

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

340 Chapter 8 Lists and Tuples

population of the United States, in thousands, during the years 1950 through 1990. The
first line in the file contains the population for 1950, the second line contains the popula-
tion for 1951, and so forth.

Write a program that reads the file’s contents into a list. The program should display the
following data:

• The average annual change in population during the time period
• The year with the greatest increase in population during the time period
• The year with the smallest increase in population during the time period

(You can access the book’s companion Web site at www.pearsonhighered.com/gaddis.)

9. World Series Champions

If you have downloaded the source code from this book’s companion Web site, you will
find a file named WorldSeriesWinners.txt in the Chapter 08 folder. This file contains a
chronological list of the World Series winning teams from 1903 through 2009. (The first
line in the file is the name of the team that won in 1903, and the last line is the name of the
team that won in 2009. Note that the World Series was not played in 1904 or 1994.)

Write a program that lets the user enter the name of a team and then displays the number
of times that team has won the World Series in the time period from 1903 through 2009.

(You can access the book’s companion Web site at www.pearsonhighered.com/gaddis.)

TIP: Read the contents of the WorldSeriesWinners.txt file into a list. When the user
enters the name of a team, the program should step through the list, counting the num-
ber of times the selected team appears.

340 Chapter 8 Lists and Tuples

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

9.1 Basic String Operations

CONCEPT: Python provides several ways to access the individual characters in a
string. Strings also have methods that allow you to perform operations
on them.

Many of the programs that you have written so far have worked with strings, but only in
a limited way. The operations that you have performed with strings so far have primarily
involved only input and output. For example, you have read strings as input from the key-
board and from files, and sent strings as output to the screen and to files.

There are many types of programs that not only read strings as input and write strings
as output, but also perform operations on strings. Word processing programs, for exam-
ple, manipulate large amounts of text, and thus work extensively with strings. Email
programs and search engines are other examples of programs that perform operations
on strings.

Python provides a wide variety of tools and programming techniques that you can use to
examine and manipulate strings. In fact, strings are a type of sequence, so many of the con-
cepts that you learned about sequences in Chapter 8 apply to strings as well. We will look
at many of these in this chapter.

More About Strings9
TOPICS

9.1 Basic String Operations
9.2 String Slicing

9.3 Testing, Searching, and Manipulating
Strings

C
H

A
P

T
E

R

341

Accessing the Individual Characters in a String
Some programming tasks require that you access the individual characters in a string.
For example, you are probably familiar with websites that require you to set up a pass-
word. For security reasons, many sites require that your password have at least one
uppercase letter, at least one lowercase letter, and at least one digit. When you set
up your password, a program examines each character to ensure that the password
meets these qualifications. (Later in this chapter you will see an example of a program
that does this sort of thing.) In this section we will look at two techniques that you can
use in Python to access the individual characters in a string: using the for loop, and
indexing.

Iterating over a String with the for Loop

One of the easiest ways to access the individual characters in a string is to use the for loop.
Here is the general format:

for variable in string:
statement
statement
etc.

In the general format, variable is the name of a variable and string is either a string lit-
eral or a variable that references a string. Each time the loop iterates, variable will refer-
ence a copy of a character in string, beginning with the first character. We say that the
loop iterates over the characters in the string. Here is an example:

name = 'Juliet'
for ch in name:

print(ch)

The name variable references a string with six characters, so this loop will iterate six times.
The first time the loop iterates, the ch variable will reference 'J', the second time the loop
iterates the ch variable will reference 'u', and so forth. This is illustrated in Figure 9-1.
When the code executes, it will display the following:

J
u
l
i
e
t

342 Chapter 9 More About Strings

9.1 Basic String Operations 343

Figure 9-1 Iterating over the string 'Juliet'

for ch in name:
 print(ch)

'J'ch

'Juliet'name

1st Iteration for ch in name:
 print(ch)

'u'ch

'Juliet'name

2nd Iteration

for ch in name:
 print(ch)

'l'ch

'Juliet'name

3rd Iteration for ch in name:
 print(ch)

'i'ch

'Juliet'name

4th Iteration

for ch in name:
 print(ch)

'e'ch

'Juliet'name

5th Iteration for ch in name:
 print(ch)

't'ch

'Juliet'name

6th Iteration

NOTE: Figure 9-1 illustrates how the ch variable references a copy of a character from
the string as the loop iterates. If we change the value that ch references in the loop, it
has no effect on the string referenced by name. To demonstrate, look at the following:

1 name = 'Juliet'
2 for ch in name:
3 ch = 'X'
4 print(name)

The statement in line 3 merely reassigns the ch variable to a different value each time
the loop iterates. It has no effect on the string 'Juliet' that is referenced by name, and
it has no effect on the number of times the loop iterates. When this code executes, the
statement in line 4 will print:

Juliet

Program 9-1 shows another example. This program asks the user to enter a string. It then
uses a for loop to iterate over the string, counting the number of times that the letter T
(uppercase or lowercase) appears.

9.1 Basic String Operations 343

Program 9-1 (count_Ts.py)

1 # This program counts the number of times
2 # the letter T (uppercase or lowercase)
3 # appears in a string.
4
5 def main():
6 # Create a variable to use to hold the count.
7 # The variable must start with 0.
8 count = 0
9

10 # Get a string from the user.
11 my_string = input('Enter a sentence: ')
12
13 # Count the Ts.
14 for ch in my_string:
15 if ch == 'T' or ch == 't':
16 count += 1
17
18 # Print the result.
19 print('The letter T appears', count, 'times.')
20
21 # Call the main function.
22 main()

Program Output (with input shown in bold)

Enter a sentence: Today we sold twenty-two toys. e
The letter T appears 5 times.

Indexing

Another way that you can access the individual characters in a string is with an index. Each
character in a string has an index that specifies its position in the string. Indexing starts at 0,
so the index of the first character is 0, the index of the second character is 1, and so forth.
The index of the last character in a string is 1 less than the number of characters in the string.
Figure 9-2 shows the indexes for each character in the string 'Roses are red'. The string
has 13 characters, so the character indexes range from 0 through 12.

344 Chapter 9 More About Strings

Figure 9-2 String indexes

R o s e s a r e r e d

0 1 2 3 4 5 6 7 8 9 10 11 12

''

You can use an index to retrieve a copy of an individual character in a string, as shown here:

my_string = 'Roses are red'
ch = my_string[6]

The expression my_string[6] in the second statement returns a copy of the character at
index 6 in my_string. After this statement executes, ch will reference 'a' as shown in
Figure 9-3.

Figure 9-3 Getting a copy of a character from a string

my_string 'Roses are red'

'a'ch

Here is another example:

my_string = 'Roses are red'
print(my_string[0], my_string[6], my_string[10])

This code will print the following:

R a r

You can also use negative numbers as indexes, to identify character positions relative to the
end of the string. The Python interpreter adds negative indexes to the length of the string
to determine the character position. The index �1 identifies the last character in a string, �2
identifies the next to last character, and so forth. The following code shows an example:

my_string = 'Roses are red'
print(my_string[-1], my_string[-2], my_string[-13])

This code will print the following:

d e R

IndexError Exceptions

An IndexError exception will occur if you try to use an index that is out of range for a
particular string. For example, the string 'Boston' has 6 characters, so the valid indexes
are 0 through 5. (The valid negative indexes are �1 through �6.) The following is an exam-
ple of code that causes an IndexError exception.

city = 'Boston'
print(city[6])

This type of error is most likely to happen when a loop incorrectly iterates beyond the end
of a string, as shown here:

city = 'Boston'
index = 0
while index < 7:

print(city[index])
index += 1

The last time that this loop iterates, the index variable will be assigned the value 6, which
is an invalid index for the string 'Boston'. As a result, the print function will cause an
IndexError exception to be raised.

9.1 Basic String Operations 345

The len Function

In Chapter 8 you learned about the len function, which returns the length of a sequence. The
len function can also be used to get the length of a string. The following code demonstrates:

city = 'Boston'
size = len(city)

The second statement calls the len function, passing the city variable as an argument. The
function returns the value 6, which is the length of the string 'Boston'. This value is
assigned to the size variable.

The len function is especially useful to prevent loops from iterating beyond the end of a
string, as shown here:

city = 'Boston'
index = 0
while index < len(city):

print(city[index])
index += 1

Notice that the loop iterates as long as index is less than the length of the string. This is
because the index of the last character in a string is always 1 less than the length of the string.

String Concatenation
A common operation that performed on strings is concatenation, or appending one string
to the end of another string. You have seen examples in earlier chapters that use the + oper-
ator to concatenate strings. The + operator produces a string that is the combination of the
two strings used as its operands. The following interactive session demonstrates:

1 >>> message = 'Hello ' + 'world' e

2 >>> print(message) e

3 Hello world
4 >>>

Line 1 concatenates the strings 'Hello' and 'world' to produce the string 'Hello world'.
The string 'Hello world' is then assigned to the message variable. Line 2 prints the string
that is referenced by the message variable. The output us shown in line 3.

Here is another interactive session that demonstrates concatenation:

1 >>> first_name = 'Emily' e

2 >>> last_name = 'Yeager' e

3 >>> full_name = first_name + ' ' + last_name e

4 >>> print(full_name) e

5 Emily Yeager
6 >>>

Line 1 assigns the string 'Emily' to the first_name variable. Line 2 assigns the string
'Yeager' to the last_name variable. Line 3 produces a string that is the concatenation of
first_name, followed by a space, followed by last_name. The resulting string is assigned
to the full_name variable. Line 4 prints the string referenced by full_name. The output
is shown in line 5.

346 Chapter 9 More About Strings

You can also use the += operator to perform concatenation. The following interactive ses-
sion demonstrates:

1 >>> letters = 'abc' e

2 >>> letters += 'def' e

3 >>> print(letters) e

4 abcdef
5 >>>

The statement in line 2 performs string concatenation. It works the same as:

letters = letters + 'def'

After the statement in line 2 executes, the letters variable will reference the string
'abcdef'. Here is another example:

>>> name = 'Kelly' e # name is 'Kelly'
>>> name += ' ' e # name is 'Kelly '
>>> name += 'Yvonne' e # name is 'Kelly Yvonne'
>>> name += ' ' e # name is 'Kelly Yvonne '
>>> name += 'Smith' e # name is 'Kelly Yvonne Smith'
>>> print(name) e

Kelly Yvonne Smith
>>>

Keep in mind that the operand on the left side of the += operator must be an existing vari-
able. If you specify a nonexistent variable, an exception is raised.

Strings Are Immutable
In Python, strings are immutable, which means that once they are created, they cannot be
changed. Some operations, such as concatenation, give the impression that they modify
strings, but in reality they do not. For example, look at Program 9-2.

Program 9-2 (concatenate.py)

1 # This program concatenates strings.
2
3 def main():
4 name = 'Carmen'
5 print('The name is', name)
6 name = name + ' Brown'
7 print('Now the name is', name)
8
9 # Call the main function.

10 main()

Program Output

The name is Carmen
Now the name is Carmen Brown

9.1 Basic String Operations 347

The statement in line 4 assigns the string 'Carmen' to the name variable, as shown in Figure
9-4. The statement in line 6 concatenates the string ' Brown' to the string 'Carmen' and
assigns the result to the name variable, as shown in Figure 9-5. As you can see from the fig-
ure, the original string 'Carmen' is not modified. Instead, a new string containing 'Carmen
Brown' is created and assigned to the name variable. (The original string, 'Carmen' is no
longer usable because no variable references it. The Python interpreter will eventually
remove the unusable string from memory.)

348 Chapter 9 More About Strings

Figure 9-5 The string ‘Carmen Brown’ assigned to name

name = name + ' Brown'

Carmen Brown

Carmenname

Figure 9-4 The string ‘Carmen’ assigned to name

name = 'Carmen'

Carmenname

Because strings are immutable, you cannot use an expression in the form string[index] on
the left side of an assignment operator. For example, the following code will cause an error:

Assign 'Bill' to friend.
friend = 'Bill'
Can we change the first character to 'J'?
friend[0] = 'J' # No, this will cause an error!

The last statement in this code will raise an exception because it attempts to change the
value of the first character in the string 'Bill'.

Checkpoint

9.1 Assume the variable name references a string. Write a for loop that prints each
character in the string.

9.2 What is the index of the first character in a string?

9.3 If a string has 10 characters, what is the index of the last character?

9.4 What happens if you try to use an invalid index to access a character in a string?

9.5 How do you find the length of a string?

9.6 What is wrong with the following code?

animal = 'Tiger'
animal[0] = 'L'

9.2 String Slicing

CONCEPT: You can use slicing expressions to select a range of characters from a
string

You learned in Chapter 8 that a slice is a span of items that are taken from a sequence.
When you take a slice from a string, you get a span of characters from within the string.
String slices are also called substrings.

To get a slice of a string, you write an expression in the following general format:

string[start : end]

In the general format, start is the index of the first character in the slice, and end is the index
marking the end of the slice. The expression will return a string containing a copy of the char-
acters from start up to (but not including) end. For example, suppose we have the following:

full_name = 'Patty Lynn Smith'
middle_name = full_name[6:10]

The second statement assigns the string 'Lynn' to the middle_name variable. If you leave out
the start index in a slicing expression, Python uses 0 as the starting index. Here is an example:

full_name = 'Patty Lynn Smith'
first_name = full_name[:5]

The second statement assigns the string 'Lynn' to first_name. If you leave out the end
index in a slicing expression, Python uses the length of the string as the end index. Here is
an example:

full_name = 'Patty Lynn Smith'
last_name = full_name[11:]

The second statement assigns the string 'Smith' to first_name. What do you think the
following code will assign to the my_string variable?

full_name = 'Patty Lynn Smith'
my_string = full_name[:]

The second statement assigns the entire string 'Patty Lynn Smith' to my_string. The
statement is equivalent to:

my_string = full_name[0 : len(full_name)]

The slicing examples we have seen so far get slices of consecutive characters from strings.
Slicing expressions can also have step value, which can cause characters to be skipped in
the string. Here is an example of code that uses a slicing expression with a step value:

letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
print(letters[0:26:2])

The third number inside the brackets is the step value. A step value of 2, as used in this
example, causes the slice to contain every second character from the specified range in the
string. The code will print the following:

ACEGIKMOQSUWY

9.2 String Slicing 349

350 Chapter 9 More About Strings

In the Spotlight:
Extracting Characters from a String
At a university, each student is assigned a system login name, which the student uses to log
into the campus computer system. As part of your internship with the university’s Information
Technology department, you have been asked to write the code that generates system login
names for students. You will use the following algorithm to generate a login name:

1. Get the first three characters of the student’s first name. (If the first name is less than
three characters in length, use the entire first name.)

2. Get the first three characters of the student’s last name. (If the last name is less than
three characters in length, use the entire last name.)

3. Get the last three characters of the student’s ID number. (If the ID number is less than
three characters in length, use the entire ID number.)

4. Concatenate the three sets of characters to generate the login name.

For example, if a student’s name is Amanda Spencer, and her ID number is ENG6721, her
login name would be AmaSpe721. You decide to write a function named get_login_name
that accepts a student’s first name, last name, and ID number as arguments, and returns the
student’s login name as a string. You will save the function in a module named login.py.
This module can then be imported into any Python program that needs to generate a login
name. Program 9-3 shows the code for the login.py module.

Program 9-3 (login.py)

1 # The get_login_name function accepts a first name,
2 # last name, and ID number as arguments. It returns
3 # a system login name.
4

You can also use negative numbers as indexes in slicing expressions to reference positions
relative to the end of the string. Here is an example:

full_name = 'Patty Lynn Smith'
last_name = full_name[-5:]

Recall that Python adds a negative index to the length of a string to get the position refer-
enced by that index. The second statement in this code assigns the string 'Smith' to the
last_name variable.

NOTE: Invalid indexes do not cause slicing expressions to raise an exception. For
example:

• If the end index specifies a position beyond the end of the string, Python will use
the length of the string instead.

• If the start index specifies a position before the beginning of the string, Python
will use 0 instead.

• If the start index is greater than the end index, the slicing expression will return
an empty string.

5 def get_login_name(first, last, idnumber):
6 # Get the first three letters of the first name.
7 # If the name is less than 3 characters, the
8 # slice will return the entire first name.
9 set1 = first[0 : 3]

10
11 # Get the first three letters of the last name.
12 # If the name is less than 3 characters, the
13 # slice will return the entire last name.
14 set2 = last[0 : 3]
15
16 # Get the last three characters of the student ID.
17 # If the ID number is less than 3 characters, the
18 # slice will return the entire ID number.
19 set3 = idnumber[-3 :]
20
21 # Put the sets of characters together.
22 login_name = set1 + set2 + set3
23
24 # Return the login name.
25 return login_name

The get_login_name function accepts three string arguments: a first name, a last name,
and an ID number. The statement in line 9 uses a slicing expression to get the first three
characters of the string referenced by first, and assigns those characters, as a string, to
the set1 variable. If the string referenced by first is less than three characters long, then
the value 3 will be an invalid ending index. If this is the case, Python will use the length
of the string as the ending index, and the slicing expression will return the entire string.

The statement in line 14 uses a slicing expression to get the first three characters of the
string referenced by last, and assigns those characters, as a string, to the set2 variable.
The entire string referenced by last will be returned if it is less than three characters.

The statement in line 19 uses a slicing expression to get the last three characters of the string
referenced by idnumber, and assigns those characters, as a string, to the set3 variable. If
the string referenced by idnumber is less than three characters, then the value �3 will be
an invalid starting index. If this is the case, Python will use 0 as the starting index.

The statement in line 22 assigns the concatenation of set1, set2, and set3 to the
login_name variable. The variable is returned in line 25. Program 9-4 shows a demonstra-
tion of the function.

Program 9-4 (generate_login.py)

1 # This program gets the user's first name, last name, and
2 # student ID number. Using this data it generates a
3 # system login name.
4

(program continues)

9.2 String Slicing 351

352 Chapter 9 More About Strings

5 import login
6
7 def main():
8 # Get the user's first name, last name, and ID number.
9 first = input('Enter your first name: ')

10 last = input('Enter your last name: ')
11 idnumber = input('Enter your student ID number: ')
12
13 # Get the login name.
14 print('Your system login name is:')
15 print(login.get_login_name(first, last, idnumber))
16
17 # Call the main function.
18 main()

Program Output (with input shown in bold)

Enter your first name: Holly e

Enter your last name: Gaddis e
Enter your student ID number: CSC34899 e
Your system login name is:
HolGad899

Program Output (with input shown in bold)

Enter your first name: Jo e
Enter your last name: Cusimano e
Enter your student ID number: BIO4497 e
Your system login name is:
JoCus497

Checkpoint

9.7 What will the following code display?

mystring = 'abcdefg'
print(mystring[2:5])

9.8 What will the following code display?

mystring = 'abcdefg'
print(mystring[3:])

9.9 What will the following code display?

mystring = 'abcdefg'
print(mystring[:3])

9.10 What will the following code display?

mystring = 'abcdefg'
print(mystring[:])

9.3 Testing, Searching, and Manipulating Strings

CONCEPT: Python provides operators and methods for testing strings, searching the
contents of strings, and getting modified copies of strings.

Testing Strings with in and not in
In Python you can use the in operator to determine whether one string is contained in
another string. Here is the general format of an expression using the in operator with two
strings:

string1 in string2

string1 and string2 can be either string literals or variables referencing strings. The expres-
sion returns true if string1 is found in string2. For example, look at the following code:

text = 'Four score and seven years ago'
if 'seven' in text:

print('The string "seven" was found.')
else:

print('The string "seven" was not found.')

This code determines whether the string 'Four score and seven years ago' contains
the string 'seven'. If we run this code it will display:

The string "seven" was found.

You can use the not in operator to determine whether one string is not contained in another
string. Here is an example:

names = 'Bill Joanne Susan Chris Juan Katie'
if 'Pierre' not in names:

print('Pierre was not found.')
else:

print('Pierre was found.')

If we run this code it will display:

Pierre was not found.

String Methods
Recall from Chapter 7 that a method is a function that belongs to an object, and performs
some operation on that object. Strings in Python have numerous methods.1 In this section
we will discuss several string methods for performing the following types of operations:

• Testing the values of strings
• Performing various modifications
• Searching for substrings and replacing sequences of characters

1 We do not cover all of the string methods in this book. For a comprehensive list of string methods, see the Python
documentation at www.python.org.

9.3 Testing, Searching, and Manipulating Strings 353

www.python.org

Here is the general format of a string method call:

stringvar.method(arguments)

In the general format, stringvar is a variable that references a string, method is the name
of the method that is being called, and arguments is one or more arguments being passed
to the method. Let’s look at some examples.

String Testing Methods

The string methods shown in Table 9-1 test a string for specific characteristics. For exam-
ple, the isdigit method returns true if the string contains only numeric digits. Otherwise,
it returns false. Here is an example:

string1 = '1200'
if string1.isdigit():

print(string1, 'contains only digits.')
else:

print(string1, 'contains characters other than digits.')

This code will display

1200 contains only digits.

Here is another example:

string2 = '123abc'
if string2.isdigit():

print(string2, 'contains only digits.')
else:

print(string2, 'contains characters other than digits.')

This code will display

123abc contains characters other than digits.

354 Chapter 9 More About Strings

Table 9-1 Some string testing methods

Method Description

isalnum() Returns true if the string contains only alphabetic letters or digits and is at least
one character in length. Returns false otherwise.

isalpha() Returns true if the string contains only alphabetic letters, and is at least one
character in length. Returns false otherwise.

isdigit() Returns true if the string contains only numeric digits and is at least one character
in length. Returns false otherwise.

islower() Returns true if all of the alphabetic letters in the string are lowercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

isspace() Returns true if the string contains only whitespace characters, and is at least one
character in length. Returns false otherwise. (Whitespace characters are spaces,
newlines (\n), and tabs (\t).

isupper() Returns true if all of the alphabetic letters in the string are uppercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

Program 9-5 demonstrates several of the string testing methods. It asks the user to enter a
string, and then displays various messages about the string, depending on the return value
of the methods.

Program 9-5 (string_test.py)

1 # This program demonstrates several string testing methods.
2
3 def main():
4 # Get a string from the user.
5 user_string = input('Enter a string: ')
6
7 print('This is what I found about that string:')
8
9 # Test the string.

10 if user_string.isalnum():
11 print('The string is alphanumeric.')
12 if user_string.isdigit():
13 print('The string contains only digits.')
14 if user_string.isalpha():
15 print('The string contains only alphabetic characters.')
16 if user_string.isspace():
17 print('The string contains only whitespace characters.')
18 if user_string.islower():
19 print('The letters in the string are all lowercase.')
20 if user_string.isupper():
21 print('The letters in the string are all uppercase.')
22
23 # Call the string.
24 main()

Program Output (with input shown in bold)

Enter a string: abc e

This is what I found about that string:
The string is alphanumeric.
The string contains only alphabetic characters.
The letters in the string are all lowercase.

Program Output (with input shown in bold)

Enter a string: 123 e

This is what I found about that string:
The string is alphanumeric.
The string contains only digits.

Program Output (with input shown in bold)

Enter a string: 123ABC e

This is what I found about that string:
The string is alphanumeric.
The letters in the string are all uppercase.

9.3 Testing, Searching, and Manipulating Strings 355

Modification Methods

Although strings are immutable, meaning they cannot be modified, they do have a number of
methods that return modified versions of themselves. Table 9-2 lists several of these methods.

356 Chapter 9 More About Strings

Table 9-2 String Modification Methods

Method Description

lower() Returns a copy of the string with all alphabetic letters converted to lowercase. Any
character that is already lowercase, or is not an alphabetic letter, is unchanged.

lstrip() Returns a copy of the string with all leading whitespace characters removed.
Leading whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the beginning of the string.

lstrip(char) The char argument is a string containing a character. Returns a copy of the string
with all instances of char that appear at the beginning of the string removed.

rstrip() Returns a copy of the string with all trailing whitespace characters removed.
Trailing whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the end of the string.

rstrip(char) The char argument is a string containing a character. The method returns a copy of
the string with all instances of char that appear at the end of the string removed.

strip() Returns a copy of the string with all leading and trailing whitespace characters
removed.

strip(char) Returns a copy of the string with all instances of char that appear at the
beginning and the end of the string removed.

upper() Returns a copy of the string with all alphabetic letters converted to uppercase. Any
character that is already uppercase, or is not an alphabetic letter, is unchanged.

For example, the lower method returns a copy of a string with all of its alphabetic letters
converted to lowercase. Here is an example:

letters = 'WXYZ'
print(letters, letters.lower())

This code will print:

WXYZ wxyz

The upper method returns a copy of a string with all of its alphabetic letters converted to
uppercase. Here is an example:

letters = 'abcd'
print(letters, letters.upper())

This code will print:

abcd ABCD

The lower and upper methods are useful for making case-insensitive string compar-
isons. String comparisons are case-sensitive, which means that the uppercase characters
are distinguished from the lowercase characters. For example, in a case-sensitive com-

parison, the string 'abc' is not considered the same as the string 'ABC' or the string
'Abc' because the case of the characters are different. Sometimes it is more convenient
to perform a case-insensitive comparison, in which the case of the characters is ignored.
In a case-insensitive comparison, the string 'abc' is considered the same as 'ABC' and
'Abc'.

For example, look at the following code:

again = 'y'
while again.lower() == 'y':

print('Hello')
print('Do you want to see that again?')
again = input('y = yes, anything else = no: ')

Notice that the last statement in the loop asks the user to enter y to see the message dis-
played again. The loop iterates as long as the expression again.lower() == 'y' is true.
The expression will be true if the again variable references either 'y' or 'Y'.

Similar results can be achieved by using the upper method, as shown here:

again = 'y'
while again.upper() == 'Y':

print('Hello')
print('Do you want to see that again?')
again = input('y = yes, anything else = no: ')

Searching and Replacing

Programs commonly need to search for substrings, or strings that appear within other
strings. For example, suppose you have a document opened in your word processor, and
you need to search for a word that appears somewhere in it. The word that you are search-
ing for is a substring that appears inside a larger string, the document.

Table 9-3 lists some of the Python string methods that search for substrings, as well as a
method that replaces the occurrences of a substring with another string.

Table 9-3 Search and replace methods

Method Description

endswith(substring) The substring argument is a string. The method returns true if
the string ends with substring.

find(substring) The substring argument is a string. The method returns the
lowest index in the string where substring is found. If
substring is not found, the method returns �1.

replace(old, new) The old and new arguments are both strings. The method returns
a copy of the string with all instances of old replaced by new.

startswith(substring) The substring argument is a string. The method returns true if
the string starts with substring.

9.3 Testing, Searching, and Manipulating Strings 357

The endswith method determines whether a string ends with a specified substring. Here is
an example:

filename = input('Enter the filename: ')
if filename.endswith('.txt'):

print('That is the name of a text file.')
elif filename.endswith('.py'):

print('That is the name of a Python source file.')
elif filename.endswith('.doc'):

print('That is the name of a word processing document.')
else:

print('Unknown file type.')

The startswith method works like the endswith method, but determines whether a
string begins with a specified substring.

The find method searches for a specified substring within a string. The method returns the
lowest index of the substring, if it is found. If the substring is not found, the method returns
�1. Here is an example:

string = 'Four score and seven years ago'
position = string.find('seven')
if position != -1:

print('The word "seven" was found at index', position)
else:

print('The word "seven" was not found.')

This code will display:

The word "seven" was found at index 15

The replace method returns a copy of a string, where every occurrence of a specified sub-
string has been replaced with another string. For example, look at the following code:

string = 'Four score and seven years ago'
new_string = string.replace('years', 'days')
print(new_string)

This code will display:

Four score and seven days ago

358 Chapter 9 More About Strings

In the Spotlight:
Validating the Characters in a Password
At the university, passwords for the campus computer system must meet the following
requirements:

• The password must be at least seven characters long.
• It must contain at least one uppercase letter.

• It must contain at least one lowercase letter.
• It must contain at least one numeric digit.

When a student sets up his or her password, the password must be validated to ensure it
meets these requirements. You have been asked to write the code that performs this valida-
tion. You decide to write a function named valid_password that accepts the password as
an argument and returns either true or false, to indicate whether it is valid. Here is the algo-
rithm for the function, in pseudocode:

valid_password function:
Set the correct_length variable to false
Set the has_uppercase variable to false
Set the has_lowercase variable to false
Set the has_digit variable to false
If the password’s length is seven characters or greater:

Set the correct_length variable to true
for each character in the password:

if the character is an uppercase letter:
Set the has_uppercase variable to true

if the character is a lowercase letter:
Set the has_lowercase variable to true

if the character is a digit:
Set the has_digit variable to true

If correct_length and has_uppercase and has_lowercase and has_digit:
Set the is_valid variable to true

else:
Set the is_valid variable to false

Return the is_valid variable

Earlier (in the previous In the Spotlight section) you created a function named
get_login_name, and stored that function in the login module. Because the valid_pass-
word function’s purpose is related to the task of creating a student’s login account, you
decide to store the valid_password function in the login module as well. Program 9-6
shows the login module with the valid_password function added to it. The function
begins at line 34.

Program 9-6 (login.py)

1 # The get_login_name function accepts a first name,
2 # last name, and ID number as arguments. It returns
3 # a system login name.
4
5 def get_login_name(first, last, idnumber):
6 # Get the first three letters of the first name.
7 # If the name is less than 3 characters, the
8 # slice will return the entire first name.
9 set1 = first[0 : 3]

10

(program continues)

9.3 Testing, Searching, and Manipulating Strings 359

360 Chapter 9 More About Strings

Program 9-6 (continued)

11 # Get the first three letters of the last name.
12 # If the name is less than 3 characters, the
13 # slice will return the entire last name.
14 set2 = last[0 : 3]
15
16 # Get the last three characters of the student ID.
17 # If the ID number is less than 3 characters, the
18 # slice will return the entire ID number.
19 set3 = idnumber[-3 :]
20
21 # Put the sets of characters together.
22 login_name = set1 + set2 + set3
23
24 # Return the login name.
25 return login_name
26
27 # The valid_password function accepts a password as
28 # an argument and returns either true or false to
29 # indicate whether the password is valid. A valid
30 # password must be at least 7 characters in length,
31 # have at least one uppercase letter, one lowercase
32 # letter, and one digit.
33
34 def valid_password(password):
35 # Set the Boolean variables to false.
36 correct_length = False
37 has_uppercase = False
38 has_lowercase = False
39 has_digit = False
40
41 # Begin the validation. Start by testing the
42 # password's length.
43 if len(password) >= 7:
44 correct_length = True
45
46 # Test each character and set the
47 # appropriate flag when a required
48 # character is found.
49 for ch in password:
50 if ch.isupper():
51 has_uppercase = True
52 if ch.islower():
53 has_lowercase = True
54 if ch.isdigit():
55 has_digit = True

56
57 # Determine whether all of the requirements
58 # are met. If they are, set is_valid to true.
59 # Otherwise, set is_valid to false.
60 if correct_length and has_uppercase and \
61 has_lowercase and has_digit:
62 is_valid = True
63 else:
64 is_valid = False
65
66 # Return the is_valid variable.
67 return is_valid

Program 9-7 imports the login module and demonstrates the valid_password function.

Program 9-7 (validate_password.py)

1 # This program gets a password from the user and
2 # validates it.
3
4 import login
5
6 def main():
7 # Get a password from the user.
8 password = input('Enter your password: ')
9

10 # Validate the password.
11 while not login.valid_password(password):
12 print('That password is not valid.')
13 password = input('Enter your password: ')
14
15 print('That is a valid password.')
16
17 # Call the main function.
18 main()

Program Output (with input shown in bold)

Enter your password: bozo e

That password is not valid.
Enter your password: kangaroo e

That password is not valid.
Enter your password: Tiger9 e

That password is not valid.
Enter your password: Leopard6 e

That is a valid password.

9.3 Testing, Searching, and Manipulating Strings 361

The Repetition Operator
In Chapter 8 you learned how to duplicate a list with the repetition operator (*). The
repetition operator works with strings as well. Here is the general format:

string_to_copy * n

The repetition operator creates a string that contains n repeated copies of string_to_copy.
Here is an example:

my_string = 'w' * 5

After this statement executes, my_string will reference the string 'wwwww'. Here is another
example:

print('Hello' * 5)

This statement will print:

HelloHelloHelloHelloHello

Program 9-8 demonstrates the repetition operator.

Program 9-8 (repetition_operator.py)

1 # This program demonstrates the repetition operator.
2
3 def main():
4 # Print nine rows increasing in length.
5 for count in range(1, 10):
6 print('Z' * count)
7
8 # Print nine rows decreasing in length.
9 for count in range(8, 0, -1):

10 print('Z' * count)
11
12 # Call the main function.
13 main()

Program Output

Z
ZZ
ZZZ
ZZZZ
ZZZZZ
ZZZZZZ
ZZZZZZZ
ZZZZZZZZ
ZZZZZZZZZ
ZZZZZZZZ
ZZZZZZZ

362 Chapter 9 More About Strings

ZZZZZZ
ZZZZZ
ZZZZ
ZZZ
ZZ
Z

Splitting a String
Strings in Python have a method named split that returns a list containing the words in
the string. Program 9-9 shows an example.

Program 9-9 (string_split.py)

1 # This program demonstrates the split method.
2
3 def main():
4 # Create a string with multiple words.
5 my_string = 'One two three four'
6
7 # Split the string.
8 word_list = my_string.split()
9

10 # Print the list of words.
11 print(word_list)
12
13 # Call the main function.
14 main()

Program Output

['One', 'two', 'three', 'four']

By default, the split method uses spaces as separators (that is, it returns a list of the words
in the string that are separated by spaces). You can specify a different separator by passing
it as an argument to the split method. For example, suppose a string contains a date, as
shown here:

date_string = '11/26/2012'

If you want to break out the month, day, and year as items in a list, you can call the split
method using the '/' character as a separator, as shown here:

date_list = date_string.split('/')

After this statement executes, the date_list variable will reference this list:

['11', '26', '2012']

9.3 Testing, Searching, and Manipulating Strings 363

Program 9-10 demonstrates this.

Program 9-10 (split_date.py)

1 # This program calls the split method, using the
2 # '/' character as a separator.
3
4 def main():
5 # Create a string with a date.
6 date_string = '11/26/2012'
7
8 # Split the date.
9 date_list = date_string.split('/')

10
11 # Display each piece of the date.
12 print('Month:', date_list[0])
13 print('Day:', date_list[1])
14 print('Year:', date_list[2])
15
16 # Call the main function.
17 main()

Program Output

Month: 11
Day: 26
Year: 2012

Checkpoint

9.11 Write code using the in operator that determines whether 'd' is in mystring.

9.12 Assume the variable big references a string. Write a statement that converts the
string it references to lowercase, and assigns the converted string to the variable
little.

9.13 Write an if statement that displays “Digit” if the string referenced by the variable
ch contains a numeric digit. Otherwise, it should display “No digit.”

9.14 What is the output of the following code?

ch = 'a'
ch2 = ch.upper()
print(ch, ch2)

9.15 Write a loop that asks the user “Do you want to repeat the program or quit?
(R/Q)”. The loop should repeat until the user has entered an R or Q (either
uppercase or lowercase).

9.16 What will the following code display?

var = '$'
print(var.upper())

364 Chapter 9 More About Strings

Review Questions 365

9.17 Write a loop that counts the number of uppercase characters that appear in the
string referenced by the variable mystring.

9.18 Assume the following statement appears in a program:

days = 'Monday Tuesday Wednesday'

Write a statement that splits the string, creating the following list:

['Monday', 'Tuesday', 'Wednesday']

9.19 Assume the following statement appears in a program:

values = 'onetwothree$four'

Write a statement that splits the string, creating the following list:

['one', 'two', 'three', 'four']

Review Questions
Multiple Choice

1. This is the first index in a string.
a. �1
b. 1
c. 0
d. The size of the string minus one

2. This is the last index in a string.
a. 1
b. 99
c. 0
d. The size of the string minus one

3. This will happen if you try to use an index that is out of range for a string.
a. a ValueError exception will occur
b. an IndexError exception will occur
c. The string will be erased and the program will continue to run.
d. Nothing—the invalid index will be ignored

4. This function returns the length of a string.
a. length
b. size
c. len
d. lengthof

5. This string method returns a copy of the string with all leading whitespace characters
removed.
a. lstrip
b. rstrip
c. remove
d. strip_leading

366 Chapter 9 More About Strings

6. This string method returns the lowest index in the string where a specified substring is
found.
a. first_index_of
b. locate
c. find
d. index_of

7. This operator determines whether one string is contained inside another string.
a. contains
b. is_in
c. ==
d. in

8. This string method returns true if a string contains only alphabetic characters and is at
least one character in length.
a. The isalpha method
b. The alpha method
c. The alphabetic method
d. The isletters method

9. If you call the index method to locate an item in a list and the item is not found, this
happens.
a. A ValueError exception is raised
b. An InvalidIndex exception is raised
c. The method returns �1
d. Nothing happens. The program continues running at the next statement.

10. This string method returns a copy of the string with all leading and trailing whitespace
characters removed.
a. clean
b. strip
c. remove_whitespace
d. rstrip

True or False

1. Once a string is created, it cannot be changed.

2. You can use the for loop to iterate over the individual characters in a string.

3. The isupper method converts a string to all uppercase characters.

4. The repetition operator (*) works with strings as well as with lists.

5. When you call a string’s split method, the method divides the string into two substrings.

Short Answer

1. What does the following code display?

mystr = 'yes'
mystr += 'no'
mystr += 'yes'
print(mystr)

2. What does the following code display?

mystr = 'abc' * 3
print(mystr)

3. What will the following code display?

mystring = 'abcdefg'
print(mystring[2:5])

4. What does the following code display?

numbers = [1, 2, 3, 4, 5, 6, 7]
print(numbers[4:6])

5. What does the following code display?

name = 'joe'
print(name.lower())
print(name.upper())
print(name)

Algorithm Workbench

1. Assume choice references a string. The following if statement determines whether
choice is equal to ‘Y’ or ‘y’:

if choice == 'Y' or choice == 'y':

Rewrite this statement so it only makes one comparison and does not use the or oper-
ator. (Hint: use either the upper or lower methods.)

2. Write a loop that counts the number of space characters that appear in the string ref-
erenced by mystring.

3. Write a loop that counts the number of digits that appear in the string referenced by
mystring.

4. Write a loop that counts the number of lowercase characters that appear in the string
referenced by mystring.

5. Write a function that accepts a string as an argument and returns true if the argument
ends with the substring '.com'. Otherwise, the function should return false.

6. Write code that makes a copy of a string with all occurrences of the lowercase letter
't' converted to uppercase.

7. Write a function that accepts a string as an argument and displays the string backwards.

8. Assume mystring references a string. Write a statement that uses a slicing expression
and displays the first 3 characters in the string.

9. Assume mystring references a string. Write a statement that uses a slicing expression
and displays the last 3 characters in the string.

10. Look at the following statement:

mystring = 'cookies>milk>fudge>cake>ice cream'

Write a statement that splits this string, creating the following list:

['cookies', 'milk', 'fudge', 'cake', 'ice cream']

Review Questions 367

368 Chapter 9 More About Strings

Programming Exercises
1. Initials

Write a program that gets a string containing a person’s first, middle, and last names, and
then display their first, middle, and last initials. For example, if the user enters John
William Smith the program should display J. W. S.

2. Sum of Digits in a String

Write a program that asks the user to enter a series of single-digit numbers with nothing
separating them. The program should display the sum of all the single digit numbers in the
string. For example, if the user enters 2514, the method should return 12, which is the sum
of 2, 5, 1, and 4.

3. Date Printer

Write a program that reads a string from the user containing a date in the form
mm/dd/yyyy. It should print the date in the form March 12, 2012.

4. Morse Code Converter

Morse code is a code where each letter of the English alphabet, each digit, and various
punctuation characters are represented by a series of dots and dashes. Table 9-5 shows part
of the code.

Write a program that asks the user to enter a string, and then converts that string to Morse
code.

Table 9-5 Morse code

Character Code Character Code Character Code Character Code

space space 6 – G – – . Q – – . –

comma – – . . – – 7 – – . . . H R . – .

period . – . – . – 8 – – – . . I . . S . . .

question mark . . – – . . 9 – – – – . J . – – – T –

0 – – – – – A . – K – . – U . . –

1 . – – – – B – . . . L . – . . V . . . –

2 . . – – – C – . – . M – – W . – –

3 . . . – – D – . . N – . X – . . –

4 – E . O – – – Y – . –

5 F . . – . P . – – . Z – – . .

5. Alphabetic Telephone Number Translator

Many companies use telephone numbers like 555-GET-FOOD so the number is easier for
their customers to remember. On a standard telephone, the alphabetic letters are mapped
to numbers in the following fashion:

A, B, and C � 2
D, E, and F � 3
G, H, and I � 4
J, K, and L � 5
M, N, and O � 6
P, Q, R, and S � 7
T, U, and V � 8
W, X, Y, and Z � 9

Write a program that asks the user to enter a 10-character telephone number in the format
XXX-XXX-XXXX. The application should display the telephone number with any alpha-
betic characters that appeared in the original translated to their numeric equivalent. For
example, if the user enters 555-GET-FOOD the application should display 555-438-3663.

6. Average Number of Words

If you have downloaded the source code from this book’s companion Web site, you will
find a file named text.txt in the Chapter 09 folder. The text that is in the file is stored
as one sentence per line. Write a program that reads the file’s contents and calculates the
average number of words per sentence.

(You can access the book’s companion Web site at www.pearsonhighered.com/gaddis.)

7. Character Analysis

If you have downloaded the source code from this book’s companion Web site, you will
find a file named text.txt in the Chapter 09 folder. Write a program that reads the file’s
contents and determines the following:

• The number of uppercase letters in the file
• The number of lowercase letters in the file
• The number of digits in the file
• The number of whitespace characters in the file

(You can access the book’s companion Web site at www.pearsonhighered.com/gaddis.)

8. Sentence Capitalizer

Write a program with a function that accepts a string as an argument and returns a copy
of the string with the first character of each sentence capitalized. For instance, if the argu-
ment is “hello. my name is Joe. what is your name?” the function should return the string
“Hello. My name is Joe. What is your name?” The program should let the user enter a
string and then pass it to the function. The modified string should be displayed.

9. Vowels and Consonants

Write a program with a function that accepts a string as an argument and returns the num-
ber of vowels that the string contains. The application should have another function that

Programming Exercises 369

VideoNote
The Vowels and
Consonants problem

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

370 Chapter 9 More About Strings

accepts a string as an argument and returns the number of consonants that the string con-
tains. The application should let the user enter a string and should display the number of
vowels and the number of consonants it contains.

10. Most Frequent Character

Write a program that lets the user enter a string and displays the character that appears
most frequently in the string.

11. Word Separator

Write a program that accepts as input a sentence in which all of the words are run together
but the first character of each word is uppercase. Convert the sentence to a string in which
the words are separated by spaces and only the first word starts with an uppercase letter. For
example the string “StopAndSmellTheRoses.” would be converted to “Stop and smell the
roses.”

12. Pig Latin

Write a program that accepts a sentence as input and converts each word to “Pig Latin.” In
one version, to convert a word to Pig Latin you remove the first letter and place that letter at
the end of the word. Then you append the string “ay” to the word. Here is an example:

English: I SLEPT MOST OF THE NIGHT

Pig Latin: IAY LEPTSAY OSTMAY FOAY HETAY IGHTNAY

371

10.1 Dictionaries

CONCEPT: A dictionary is an object that stores a collection of data. Each element in
a dictionary has two parts: a key and a value. You use a key to locate a
specific value.

When you hear the word “dictionary,” you probably think about a large book such as the
Merriam-Webster dictionary, containing words and their definitions. If you want to know
the meaning of a particular word, you locate it in the dictionary to find its definition.

In Python, a dictionary is an object that stores a collection of data. Each element that is
stored in a dictionary has two parts: a key and a value. In fact, dictionary elements are com-
monly referred to as key-value pairs. When you want to retrieve a specific value from a dic-
tionary, you use the key that is associated with that value. This is similar to the process of
looking up a word in the Merriam-Webster dictionary, where the words are keys and the
definitions are values.

For example, suppose each employee in a company has an ID number, and we want to write
a program that lets us look up an employee’s name by entering that employee’s ID number.
We could create a dictionary in which each element contains an employee ID number as the
key and that employee’s name as the value. If we know an employee’s ID number, then we
can retrieve that employee’s name.

Another example would be a program that lets us enter a person’s name and gives us that
person’s phone number. The program could use a dictionary in which each element contains
a person’s name as the key and that person’s phone number as the value. If we know a per-
son’s name, then we can retrieve that person’s phone number.

Dictionaries and Sets

TOPICS

10.1 Dictionaries
10.2 Sets
10.3 Serializing Objects

C
H

A
P

T
E

R

10

VideoNote
Introduction to
Dictionaries

372 Chapter 10 Dictionaries and Sets

Creating a Dictionary
You can create a dictionary by enclosing the elements inside a set of curly braces ({}). An
element consists of a key, followed by a colon, followed by a value. The elements are sep-
arated by commas. The following statement shows an example:

phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'}

This statement creates a dictionary and assigns it to the phonebook variable. The diction-
ary contains the following three elements:

• The first element is 'Chris':'555-1111'. In this element the key is 'Chris' and the
value is '555-1111'.

• The second element is 'Katie':'555-2222'. In this element the key is 'Katie' and
the value is '555-2222'.

• The third element is 'Joanne':'555-3333'. In this element the key is 'Joanne' and
the value is '555-3333'.

In this example the keys and the values are strings. The values in a dictionary can be objects
of any type, but the keys must be immutable objects. For example, keys can be strings, inte-
gers, floating-point values, or tuples. Keys cannot be lists or any other type of immutable
object.

Retrieving a Value from a Dictionary
The elements in a dictionary are not stored in any particular order. For example, look
at the following interactive session in which a dictionary is created and its elements are
displayed:

>>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'} e

>>> phonebook e

{'Chris': '555-1111', 'Joanne': '555-3333', 'Katie': '555-2222'}
>>>

Notice that the order in which the elements are displayed is different than the order in
which they were created. This illustrates how dictionaries are not sequences, like lists,
tuples, and strings. As a result, you cannot use a numeric index to retrieve a value by its
position from a dictionary. Instead, you use a key to retrieve a value.

To retrieve a value from a dictionary, you simply write an expression in the following gen-
eral format:

dictionary_name[key]

In the general format, dictionary_name is the variable that references the dictionary, and key
is a key. If the key exists in the dictionary, the expression returns the value that is associated

NOTE: Key-value pairs are often referred to as mappings because each key is mapped
to a value.

10.1 Dictionaries 373

with the key. If the key does not exist, a KeyError exception is raised. The following interac-
tive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'} e

2 >>> phonebook['Chris'] e

3 '555-1111'
4 >>> phonebook['Joanne'] e

5 '555-3333'
6 >>> phonebook['Katie'] e

7 '555-2222'
8 >>> phonebook['Kathryn'] e

Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
phonebook['Kathryn']

KeyError: 'Kathryn'
>>>

Let’s take a closer look at the session:

• Line 1 creates a dictionary containing names (as keys) and phone numbers (as values).
• In line 2, the expression phonebook['Chris'] returns the value from the phonebook

dictionary that is associated with the key 'Chris'. The value is displayed in line 3.
• In line 4, the expression phonebook['Joanne'] returns the value from the

phonebook dictionary that is associated with the key 'Joanne'. The value is dis-
played in line 5.

• In line 6, the expression phonebook['Katie'] returns the value from the phonebook
dictionary that is associated with the key 'Katie'. The value is displayed in line 7.

• In line 8, the expression phonebook['Kathryn'] is entered. There is no such key as
'Kathryn' in the phonebook dictionary, so a KeyError exception is raised.

NOTE: Remember that string comparisons are case sensitive. The expression
phonebook['katie'] will not locate the key 'Katie' in the dictionary.

Using the in and not in Operators to Test
for a Value in a Dictionary
As previously demonstrated, a KeyError exception is raised if you try to retrieve a value
from a dictionary using a nonexistent key. To prevent such an exception, you can use the
in operator to determine whether a key exists before you try to use it to retrieve a value.
The following interactive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'} e

2 >>> if 'Chris' in phonebook: e

3 print(phonebook['Chris']) e e

4
5 555-1111
6 >>>

374 Chapter 10 Dictionaries and Sets

The if statement in line 2 determines whether the key 'Chris' is in the phonebook dic-
tionary. If it is, the statement in line 3 displays the value that is associated with that key.

You can also use the not in operator to determine whether a key does not exist, as demon-
strated in the following session:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222'} e

2 >>> if 'Joanne' not in phonebook: e

3 print('Joanne is not found.') e e

4
5 Joanne is not found.
6 >>>

NOTE: Keep in mind that string comparisons with the in and not in operators are
case sensitive.

NOTE: You cannot have duplicate keys in a dictionary. When you assign a value to
an existing key, the new value replaces the existing value.

Adding Elements to an Existing Dictionary
Dictionaries are mutable objects. You can add new key-value pairs to a dictionary with an
assignment statement in the following general format:

dictionary_name[key] = value

In the general format, dictionary_name is the variable that references the dictionary, and
key is a key. If key already exists in the dictionary, its associated value will be changed to
value. If the key does not exist, it will be added to the dictionary, along with value as its
associated value. The following interactive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'} e

2 >>> phonebook['Joe'] = '555-0123' e

3 >>> phonebook['Chris'] = '555-4444' e

4 >>> phonebook e

5 {'Chris': '555-4444', 'Joanne': '555-3333', 'Joe': '555-0123', 'Katie': '555-2222'}
6 >>>

Let’s take a closer look at the session:

• Line 1 creates a dictionary containing names (as keys) and phone numbers (as values).
• The statement in line 2 adds a new key-value pair to the phonebook dictionary.

Because there is no key 'Joe' in the dictionary, this statement adds the key 'Joe',
along with its associated value '555-0123'.

• The statement in line 3 changes the value that is associated with an existing key.
Because the key 'Chris' already exists in the phonebook dictionary, this statement
changes its associated value to '555-4444'.

• Line 4 displays the contents of the phonebook dictionary. The output is shown in line 5.

10.1 Dictionaries 375

Deleting Elements
You can delete an existing key-value pair from a dictionary with the del statement. Here
is the general format:

del dictionary_name[key]

In the general format, dictionary_name is the variable that references the dictionary, and
key is a key. After the statement executes, the key and its associated value will be deleted
from the dictionary. If the key does not exist, a KeyError exception is raised. The follow-
ing interactive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'} e

2 >>> phonebook e

3 {'Chris': '555-1111', 'Joanne': '555-3333', 'Katie': '555-2222'}
4 >>> del phonebook['Chris'] e

5 >>> phonebook e

6 {'Joanne': '555-3333', 'Katie': '555-2222'}
7 >>> del phonebook['Chris'] e

8 Traceback (most recent call last):
9 File "<pyshell#5>", line 1, in <module>
10 del phonebook['Chris']
11 KeyError: 'Chris'
12 >>>

Let’s take a closer look at the session:

• Line 1 creates a dictionary and line 2 displays its contents.
• Line 4 deletes the element with the key 'Chris', and line 5 displays the contents of

the dictionary. You can see in the output in line 6 that the element no longer exists in
the dictionary.

• Line 7 tries to delete the element with the key 'Chris' again. Because the element no
longer exists, a KeyError exception is raised.

To prevent a KeyError exception from being raised, you should use the in operator to
determine whether a key exists before you try to delete it and its associated value. The fol-
lowing interactive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'} e

2 >>> if 'Chris' in phonebook: e

3 del phonebook['Chris'] e e

4
5 >>> phonebook e

6 {'Joanne': '555-3333', 'Katie': '555-2222'}
7 >>>

Getting the Number of Elements in a Dictionary
You can use the built-in len function to get the number of elements in a dictionary. The fol-
lowing interactive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222'} e

2 >>> num_items = len(phonebook) e

376 Chapter 10 Dictionaries and Sets

3 >>> print(num_items) e

4 2
5 >>>

Here is a summary of the statements in the session:

• Line 1 creates a dictionary with two elements and assigns it to the phonebook variable.
• Line 2 calls the len function passing the phonebook variable as an argument. The

function returns the value 2, which is assigned to the num_items variable.
• Line 3 passes num_items to the print function. The function's output is shown in

line 4.

Mixing Data Types in a Dictionary
As previously mentioned, the keys in a dictionary must be immutable objects, but their
associated values can be any type of object. For example, the values can be lists, as demon-
strated in the following interactive session. In this session we create a dictionary in which
the keys are student names and the values are lists of test scores.

1 >>> test_scores = { 'Kayla' : [88, 92, 100], e

2 'Luis' : [95, 74, 81], e

3 'Sophie' : [72, 88, 91], e

4 'Ethan' : [70, 75, 78] } e

5 >>> test_scores e

6 {'Kayla': [88, 92, 100], 'Sophie': [72, 88, 91], 'Ethan': [70, 75, 78],
7 'Luis': [95, 74, 81]}
8 >>> test_scores['Sophie'] e

9 [72, 88, 91]
10 >>> kayla_scores = test_scores['Kayla'] e

11 >>> print(kayla_scores) e

12 [88, 92, 100]
13 >>>

Let’s take a closer look at the session. This statement in lines 1 through 4 creates a dictio-
nary and assigns it to the test_scores variable. The dictionary contains the following four
elements:

• The first element is 'Kayla' : [88, 92, 100]. In this element the key is 'Kayla'
and the value is the list [88, 92, 100].

• The second element is 'Luis' : [95, 74, 81]. In this element the key is 'Luis'
and the value is the list [95, 74, 81].

• The third element is 'Sophie' : [72, 88, 91]. In this element the key is 'Sophie'
and the value is the list [72, 88, 91].

• The fourth element is 'Ethan' : [70, 75, 78]. In this element the key is 'Ethan'
and the value is the list [70, 75, 78].

Here is a summary of the rest of the session:

• Line 5 displays the contents of the dictionary, as shown in lines 6 through 7.
• Line 8 retrieves the value that is associated with the key 'Sophie'. The value is dis-

played in line 9.

10.1 Dictionaries 377

• Line 10 retrieves the value that is associated with the key 'Kayla' and assigns it to
the kayla_scores variable. After this statement executes, the kayla_scores vari-
able reference the list [88, 92, 100].

• Line 11 passes the kayla_scores variable to the print function. The function’s out-
put is shown in line 12.

The values that are stored in a single dictionary can be of different types. For example, one
element’s value might be a string, another element’s value might be a list, and yet another
element’s value might be an integer. The keys can be of different types, too, as long as they
are immutable. The following interactive session demonstrates how different types can be
mixed in a dictionary:

1 >>> mixed_up = {'abc':1, 999:'yada yada', (3, 6, 9):[3, 6, 9]} e

2 >>> mixed_up e

3 {(3, 6, 9): [3, 6, 9], 'abc': 1, 999: 'yada yada'}
4 >>>

This statement in line 1 creates a dictionary and assigns it to the mixed_up variable. The
dictionary contains the following elements:

• The first element is 'abc':1. In this element the key is the string 'abc' and the value
is the integer 1.

• The second element is 999:'yada yada'. In this element the key is the integer 999
and the value is the string 'yada yada'.

• The third element is (3, 6, 9):[3, 6, 9]. In this element the key is the tuple (3,
6, 9) and the value is the list [3, 6, 9].

The following interactive session gives a more practical example. It creates a dictionary that
contains various pieces of data about an employee:

1 >>> employee = {'name' : 'Kevin Smith', 'id' : 12345, 'payrate' : 25.75 } e

2 >>> employee e

3 {'payrate': 25.75, 'name': 'Kevin Smith', 'id': 12345}
4 >>>

This statement in line 1 creates a dictionary and assigns it to the employee variable. The
dictionary contains the following elements:

• The first element is 'name' : 'Kevin Smith'. In this element the key is the string
'name' and the value is the string 'Kevin Smith'.

• The second element is 'id' : 12345. In this element the key is the string 'id' and
the value is the integer 12345.

• The third element is 'payrate' : 25.75. In this element the key is the string
'payrate' and the value is the floating-point number 25.75.

Creating an Empty Dictionary
Sometimes you need to create an empty dictionary and then add elements to it as the pro-
gram executes. You can use an empty set of curly braces to create an empty dictionary, as
demonstrated in the following interactive session:

1 >>> phonebook = {} e

2 >>> phonebook['Chris'] = '555-1111' e

378 Chapter 10 Dictionaries and Sets

3 >>> phonebook['Katie'] = '555-2222' e

4 >>> phonebook['Joanne'] = '555-3333' e

5 >>> phonebook e

6 {'Chris': '555-1111', 'Joanne': '555-3333', 'Katie': '555-2222'}
7 >>>

The statement in line 1 creates an empty dictionary and assigns it to the phonebook vari-
able. Lines 2 through 4 add key-value pairs to the dictionary, and the statement in line 5
displays the dictionary’s contents.

You can also use the built-in dict() method to create an empty dictionary, as shown in the
following statement:

phonebook = dict()

After this statement executes, the phonebook variable will reference an empty dictionary.

Using the for Loop to Iterate over a Dictionary
You can use the for loop in the following general format to iterate over all the keys in a
dictionary:

for var in dictionary:
statement
statement
etc.

In the general format, var is the name of a variable and dictionary is the name of a dic-
tionary. This loop iterates once for each element in the dictionary. Each time the loop iter-
ates, var is assigned a key. The following interactive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', e

2 'Katie':'555-2222', e

3 'Joanne':'555-3333'} e

4 >>> for key in phonebook: e

5 print(key) e e

6
7
8 Chris
9 Joanne
10 Katie
11 >>> for key in phonebook: e

12 print(key, phonebook[key]) e e

13
14
15 Chris 555-1111
16 Joanne 555-3333
17 Katie 555-2222
18 >>>

Here is a summary of the statements in the session:

• Lines 1 through 3 create a dictionary with three elements and assign it to the
phonebook variable.

10.1 Dictionaries 379

• Lines 4 through 5 contain a for loop that iterates once for each element of the
phonebook dictionary. Each time the loop iterates, the key variable is assigned a key.
Line 5 prints the value of the key variable. Lines 8 through 9 show the output of the
loop.

• Lines 11 through 12 contain another for loop that iterates once for each element of
the phonebook dictionary, assigning a key to the key variable. Line 5 prints the key
variable, followed by the value that is associated with that key. Lines 15 through 17
show the output of the loop.

Some Dictionary Methods
Dictionary objects have several methods. In this section we look at some of the more use-
ful ones, which are summarized in Table 10-1.

Table 10-1 Some of the dictionary methods

Method Description

clear Clears the contents of a dictionary.

get Gets the value associated with a specified key. If the key is not
found, the method does not raise an exception. Instead, it returns
a default value.

items Returns all the keys in a dictionary and their associated values as
a sequence of tuples.

keys Returns all the keys in a dictionary as a sequence of tuples.

pop Returns the value associated with a specified key and removes
that key-value pair from the dictionary. If the key is not found,
the method returns a default value.

popitem Returns a randomly selected key-value pair as a tuple from the
dictionary and removes that key-value pair from the dictionary.

values Returns all the values in the dictionary as a sequence of tuples.

The clear Method

The clear method deletes all the elements in a dictionary, leaving the dictionary empty.
The method’s general format is

dictionary.clear()

The following interactive session demonstrates the method:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222'} e

2 >>> phonebook e

3 {'Chris': '555-1111', 'Katie': '555-2222'}
4 >>> phonebook.clear() e

5 >>> phonebook e

6 {}
7 >>>

380 Chapter 10 Dictionaries and Sets

Notice that after the statement in line 4 executes, the phonebook dictionary contains no
elements.

The get Method

You can use the get method as an alternative to the [] operator for getting a value from a
dictionary. The get method does not raise an exception if the specified key is not found.
Here is the method’s general format:

dictionary.get(key, default)

In the general format, dictionary is the name of a dictionary, key is a key to search for
in the dictionary, and default is a default value to return if the key is not found. When
the method is called, it returns the value that is associated with the specified key. If the
specified key is not found in the dictionary, the method returns default. The following
interactive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', 'Katie':'555-2222'} e

2 >>> value = phonebook.get('Katie', 'Entry not found') e

3 >>> print(value) e

4 555-2222
5 >>> value = phonebook.get('Andy', 'Entry not found') e

6 >>> print(value) e

7 Entry not found
8 >>>

Let’s take a closer look at the session:

• The statement in line 2 searches for the key 'Katie' in the phonebook dictionary. The
key is found, so its associated value is returned and assigned to the value variable.

• Line 3 passes the value variable to the print function. The function’s output is
shown in line 4.

• The statement in line 5 searches for the key 'Andy' in the phonebook dictionary. The
key is not found, so the string 'Entry not found' is assigned to the value variable.

• Line 6 passes the value variable to the print function. The function’s output is
shown in line 7.

The items Method

The items method returns all of a dictionary’s keys and their associated values. They are
returned as a special type of sequence known as a dictionary view. Each element in the dic-
tionary view is a tuple, and each tuple contains a key and its associated value. For exam-
ple, suppose we have created the following dictionary:

phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'}

If we call the phonebook.items() method, it returns the following sequence:

[('Chris', '555-1111'), ('Joanne', '555-3333'), ('Katie', '555-2222')]

Notice the following:

• The first element in the sequence is the tuple ('Chris', '555-1111').
• The second element in the sequence is the tuple ('Joanne', '555-3333').
• The third element in the sequence is the tuple ('Katie', '555-2222').

10.1 Dictionaries 381

You can use the for loop to iterate over the tuples in the sequence. The following interac-
tive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', e

2 'Katie':'555-2222', e

3 'Joanne':'555-3333'} e

4 >>> for key, value in phonebook.items(): e

5 print(key, value) e e

6
7
8 Chris 555-1111
9 Joanne 555-3333
10 Katie 555-2222
11 >>>

Here is a summary of the statements in the session:

• Lines 1 through 3 create a dictionary with three elements and assign it to the
phonebook variable.

• The for loop in lines 4 through 5 calls the phonebook.items() method, which
returns a sequence of tuples containing the key-value pairs in the dictionary. The loop
iterates once for each tuple in the sequence. Each time the loop iterates, the values of
a tuple are assigned to the key and value variables. Line 5 prints the value of the key
variable, followed by the value of the value variable. Lines 8 through 10 show the
output of the loop.

The keys Method

The keys method returns all of a dictionary’s keys as a dictionary view, which is a type of
sequence. Each element in the dictionary view is a key from the dictionary. For example,
suppose we have created the following dictionary:

phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'}

If we call the phonebook.keys() method, it will return the following sequence:

['Chris', 'Joanne', 'Katie']

The following interactive session shows how you can use a for loop to iterate over the
sequence that is returned from the keys method:

1 >>> phonebook = {'Chris':'555-1111', e

2 'Katie':'555-2222', e

3 'Joanne':'555-3333'} e

4 >>> for key in phonebook.keys(): e

5 print(key) e e

6
7
8 Chris
9 Joanne
10 Katie
11 >>>

382 Chapter 10 Dictionaries and Sets

The pop Method

The pop method returns the value associated with a specified key and removes that key-
value pair from the dictionary. If the key is not found, the method returns a default value.
Here is the method’s general format:

dictionary.pop(key, default)

In the general format, dictionary is the name of a dictionary, key is a key to search
for in the dictionary, and default is a default value to return if the key is not found.
When the method is called, it returns the value that is associated with the specified key,
and it removes that key-value pair from the dictionary. If the specified key is not found
in the dictionary, the method returns default. The following interactive session
demonstrates:

1 >>> phonebook = {'Chris':'555-1111', e

2 'Katie':'555-2222', e

3 'Joanne':'555-3333‘} e

4 >>> phone_num = phonebook.pop('Chris', 'Entry not found') e

5 >>> phone_num e

6 '555-1111'
7 >>> phonebook e

8 {'Joanne': '555-3333', 'Katie': '555-2222'}
9 >>> phone_num = phonebook.pop('Andy', 'Element not found') e

10 >>> phone_num e

11 'Element not found'
12 >>> phonebook e

13 {'Joanne': '555-3333', 'Katie': '555-2222'}
14 >>>

Here is a summary of the statements in the session:

• Lines 1 through 3 create a dictionary with three elements and assign it to the
phonebook variable.

• Line 4 calls the phonebook.pop() method, passing 'Chris' as the key to search
for. The value that is associated with the key 'Chris' is returned and assigned to
the phone_num variable. The key-value pair containing the key 'Chris' is removed
from the dictionary.

• Line 5 displays the value assigned to the phone_num variable. The output is displayed
in line 6. Notice that this is the value that was associated with the key 'Chris'.

• Line 7 displays the contents of the phonebook dictionary. The output is shown in
line 8. Notice the key-value pair that contained the key 'Chris' is no longer in the
dictionary.

• Line 9 calls the phonebook.pop() method, passing 'Andy' as the key to search for.
The key is not found, so the string 'Entry not found' is assigned to the phone_num
variable.

• Line 10 displays the value assigned to the phone_num variable. The output is dis-
played in line 11.

• Line 12 displays the contents of the phonebook dictionary. The output is shown in
line 13.

10.1 Dictionaries 383

The popitem Method

The popitem method returns a randomly selected key-value pair, and it removes that key-
value pair from the dictionary. The key-value pair is returned as a tuple. Here is the
method’s general format:

dictionary.popitem()

You can use an assignment statement in the following general format to assign the returned
key and value to individual variables:

k, v = dictionary.popitem()

This type of assignment is known as a multiple assignment because multiple variables are
being assigned at once. In the general format, k and v are variables. After the statement exe-
cutes, k is assigned a randomly selected key from the dictionary, and v is assigned the
value associated with that key. The key-value pair is removed from the dictionary.

The following interactive session demonstrates:

1 >>> phonebook = {'Chris':'555-1111', e

2 'Katie':'555-2222', e

3 'Joanne':'555-3333'} e

4 >>> phonebook e

5 {'Chris': '555-1111', 'Joanne': '555-3333', 'Katie': '555-2222'}
6 >>> key, value = phonebook.popitem() e

7 >>> print(key, value) e

8 Chris 555-1111
9 >>> phonebook e

10 {'Joanne': '555-3333', 'Katie': '555-2222'}
11 >>>

Here is a summary of the statements in the session:

• Lines 1 through 3 create a dictionary with three elements and assign it to the
phonebook variable.

• Line 4 displays the dictionary’s contents, shown in line 5.
• Line 6 calls the phonebook.popitem() method. The key and value that are returned

from the method are assigned to the variables key and value. The key-value pair is
removed from the dictionary.

• Line 7 displays the values assigned to the key and value variables. The output is
shown in line 8.

• Line 9 displays the contents of the dictionary. The output is shown in line 10. Notice that
the key-value pair that was returned from the popitemmethod in line 6 has been removed.

Keep in mind that the popitem method raises a KeyError exception if it is called on an
empty dictionary.

The values Method

The values method returns all a dictionary’s values (without their keys) as a dictionary
view, which is a type of sequence. Each element in the dictionary view is a value from the
dictionary. For example, suppose we have created the following dictionary:

phonebook = {'Chris':'555-1111', 'Katie':'555-2222', 'Joanne':'555-3333'}

384 Chapter 10 Dictionaries and Sets

If we call the phonebook.values() method, it returns the following sequence:

['555-1111', '555-2222', '555-3333']

The following interactive session shows how you can use a for loop to iterate over the
sequence that is returned from the values method:

1 >>> phonebook = {'Chris':'555-1111', e

2 'Katie':'555-2222', e

3 'Joanne':'555-3333'} e

4 >>> for val in phonebook.values(): e

5 print(val) e e

6
7
8 555-1111
9 555-3333
10 555-2222
11 >>>

In the Spotlight:
Using a Dictionary to Simulate a Deck of Cards
In some games involving poker cards, the cards are assigned numeric values. For example,
in the game of Blackjack, the cards are given the following numeric values:

• Numeric cards are assigned the value they have printed on them. For example, the
value of the 2 of spades is 2, and the value of the 5 of diamonds is 5.

• Jacks, queens, and kings are valued at 10.
• Aces are valued at either 1 or 11, depending on the player’s choice.

In this section we look at a program that uses a dictionary to simulate a standard deck of
poker cards, where the cards are assigned numeric values similar to those used in Blackjack.
(In the program, we assign the value 1 to all aces.) The key-value pairs use the name of the
card as the key and the card’s numeric value as the value. For example, the key-value pair
for the queen of hearts is

'Queen of Hearts':10

And the key-value pair for the 8 of diamonds is

'8 of Diamonds':8

The program prompts the user for the number of cards to deal, and it randomly deals a
hand of that many cards from the deck. The names of the cards are displayed, as well as
the total numeric value of the hand. Program 10-1 shows the program code. The program
is divided into three functions: main, create_deck, and deal_cards. Rather than present-
ing the entire program at once, let’s first examine the main function:

10.1 Dictionaries 385

Program 10-1 (card_dealer.py: main function)

1 # This program uses a dictionary as a deck of cards.
2
3 def main():
4 # Create a deck of cards.
5 deck = create_deck()
6
7 # Get the number of cards to deal.
8 num_cards = int(input('How many cards should I deal? '))
9
10 # Deal the cards.
11 deal_cards(deck, num_cards)
12

Line 5 calls the create_deck function. The function creates a dictionary containing the
key-value pairs for a deck of cards, and it returns a reference to the dictionary. The refer-
ence is assigned to the deck variable.

Line 8 prompts the user to enter the number of cards to deal. The input is converted to an
int and assigned to the num_cards variable.

Line 11 calls the deal_cards function passing the deck and num_cards variables as argu-
ments. The deal_cards function deals the specified number of cards from the deck.

Next is the create_deck function.

Program 10-1 (card_dealer.py: create_deck function)

13 # The create_deck function returns a dictionary
14 # representing a deck of cards.
15 def create_deck():
16 # Create a dictionary with each card and its value
17 # stored as key-value pairs.
18 deck = {'Ace of Spades':1, '2 of Spades':2, '3 of Spades':3,
19 '4 of Spades':4, '5 of Spades':5, '6 of Spades':6,
20 '7 of Spades':7, '8 of Spades':8, '9 of Spades':9,
21 '10 of Spades':10, 'Jack of Spades':10,
22 'Queen of Spades':10, 'King of Spades': 10,
23
24 'Ace of Hearts':1, '2 of Hearts':2, '3 of Hearts':3,
25 '4 of Hearts':4, '5 of Hearts':5, '6 of Hearts':6,
26 '7 of Hearts':7, '8 of Hearts':8, '9 of Hearts':9,
27 '10 of Hearts':10, 'Jack of Hearts':10,
28 'Queen of Hearts':10, 'King of Hearts': 10,
29
30 'Ace of Clubs':1, '2 of Clubs':2, '3 of Clubs':3,
31 '4 of Clubs':4, '5 of Clubs':5, '6 of Clubs':6,

(program continues)

386 Chapter 10 Dictionaries and Sets

Program 10-1 (continued)

32 '7 of Clubs':7, '8 of Clubs':8, '9 of Clubs':9,
33 '10 of Clubs':10, 'Jack of Clubs':10,
34 'Queen of Clubs':10, 'King of Clubs': 10,
35
36 'Ace of Diamonds':1, '2 of Diamonds':2, '3 of Diamonds':3,
37 '4 of Diamonds':4, '5 of Diamonds':5, '6 of Diamonds':6,
38 '7 of Diamonds':7, '8 of Diamonds':8, '9 of Diamonds':9,
39 '10 of Diamonds':10, 'Jack of Diamonds':10,
40 'Queen of Diamonds':10, 'King of Diamonds': 10}
41
42 # Return the deck.
43 return deck
44

The code in lines 18 through 40 creates a dictionary with key-value pairs representing the
cards in a standard poker deck. (The blank lines that appear in lines 22, 29, and 35 were
inserted to make the code easier to read.)

Line 43 returns a reference to the dictionary.

Next is the deal_cards function.

Program 10-1 (card_dealer.py: deal_cards function)

45 # The deal_cards function deals a specified number of cards
46 # from the deck.
47
48 def deal_cards(deck, number):
49 # Initialize an accumulator for the hand value.
50 hand_value = 0
51
52 # Make sure the number of cards to deal is not
53 # greater than the number of cards in the deck.
54 if number > len(deck):
55 number = len(deck)
56
57 # Deal the cards and accumulate their values.
58 for count in range(number):
59 card, value = deck.popitem()
60 print(card)
61 hand_value += value
62
63 # Display the value of the hand.
64 print('Value of this hand:', hand_value)
65
66 # Call the main function.
67 main()

10.1 Dictionaries 387

The deal_cards function accepts two arguments: the number of cards to deal and the deck
to deal them from. Line 50 initializes an accumulator variable named hand_value to 0.
The if statement in line 54 determines whether the number of cards to deal is greater than
the number of cards in the deck. If so, line 55 sets the number of cards to deal to the num-
ber of cards in the deck.

The for loop that begins in line 58 iterates once for each card that is to be dealt. Inside the
loop, the statement in line 59 calls the popitem method to randomly return a key-value pair
from the deck dictionary. The key is assigned to the card variable, and the value is assigned
to the value variable. Line 60 displays the name of the card, and line 61 adds the card’s
value to the hand_value accumulator.

After the loop has finished, line 64 displays the total value of the hand.

Program Output (with input shown in bold)

How many cards should I deal? 5 e

8 of Hearts
5 of Diamonds
5 of Hearts
Queen of Clubs
10 of Spades
Value of this hand: 38

In the Spotlight:
Storing Names and Birthdays in a Dictionary
In this section we look at a program that keeps your friends’ names and birthdays in a dic-
tionary. Each entry in the dictionary uses a friend’s name as the key and that friend’s birth-
day as the value. You can use the program to look up your friends’ birthdays by entering
their names.

The program displays a menu that allows the user to make one of the following choices:

1. Look up a birthday
2. Add a new birthday
3. Change a birthday
4. Delete a birthday
5. Quit the program

The program initially starts with an empty dictionary, so you have to choose item 2 from
the menu to add a new entry. Once you have added a few entries, you can choose item 1 to
look up a specific person’s birthday, item 3 to change an existing birthday in the dictionary,
item 4 to delete a birthday from the dictionary, or item 5 to quit the program.

Program 10-2 shows the program code. The program is divided into six functions: main,
get_menu_choice, look_up, add, change, and delete. Rather than presenting the entire
program at once, let’s first examine the global constants and the main function:

Program 10-2 (birthdays.py: main function)

1 # This program uses a dictionary to keep friends’
2 # names and birthdays.
3
4 # Global constants for menu choices
5 LOOK_UP = 1
6 ADD = 2
7 CHANGE = 3
8 DELETE = 4
9 QUIT = 5
10
11 # main function
12 def main():
13 # Create an empty dictionary.
14 birthdays = {}
15
16 # Initialize a variable for the user's choice.
17 choice = 0
18
19 while choice != QUIT:
20 # Get the user's menu choice.
21 choice = get_menu_choice()
22
23 # Process the choice.
24 if choice == LOOK_UP:
25 look_up(birthdays)
26 elif choice == ADD:
27 add(birthdays)
28 elif choice == CHANGE:
29 change(birthdays)
30 elif choice == DELETE:
31 delete(birthdays)
32

The global constants that are declared in lines 5 through 9 are used to test the user’s menu
selection. Inside the main function, line 14 creates an empty dictionary referenced by the
birthdays variable. Line 17 initializes the choice variable with the value 0. This variable
holds the user’s menu selection.

The while loop that begins in line 19 repeats until the user chooses to quit the program.
Inside the loop, line 21 calls the get_menu_choice function. The get_menu_choice func-
tion displays the menu and returns the user’s selection. The value that is returned is assigned
to the choice variable.

388 Chapter 10 Dictionaries and Sets

10.1 Dictionaries 389

The if-elif statement in lines 24 through 31 processes the user’s menu choice. If the user
selects item 1, line 25 calls the look_up function. If the user selects item 2, line 27 calls the
add function. If the user selects item 3, line 29 calls the change function. If the user selects
item 4, line 31 calls the delete function.

The get_menu_choice function is next.

Program 10-2 (birthdays.py: get_menu_choice function)

33 # The get_menu_choice function displays the menu
34 # and gets a validated choice from the user.
35 def get_menu_choice():
36 print()
37 print('Friends and Their Birthdays')
38 print('---------------------------')
39 print('1. Look up a birthday')
40 print('2. Add a new birthday')
41 print('3. Change a birthday')
42 print('4. Delete a birthday')
43 print('5. Quit the program')
44 print()
45
46 # Get the user's choice.
47 choice = int(input('Enter your choice: '))
48
49 # Validate the choice.
50 while choice < LOOK_UP or choice > QUIT:
51 choice = int(input('Enter a valid choice: '))
52
53 # return the user's choice.
54 return choice
55

The statements in lines 36 through 44 display the menu on the screen. Line 47 prompts the
user to enter his or her choice. The input is converted to an int and assigned to the choice
variable. The while loop in lines 50 through 51 validates the user’s input and, if necessary,
prompts the user to reenter his or her choice. Once a valid choice is entered, it is returned
from the function in line 54.

The look_up function is next.

Program 10-2 (birthdays.py: look_up function)

56 # The look_up function looks up a name in the
57 # birthdays dictionary.
58 def look_up(birthdays):
59 # Get a name to look up.

(program continues)

Program 10-2 (continued)

60 name = input('Enter a name: ')
61
62 # Look it up in the dictionary.
63 print(birthdays.get(name, 'Not found.'))
64

The purpose of the look_up function is to allow the user to look up a friend’s birthday. It
accepts the dictionary as an argument. Line 60 prompts the user to enter a name, and line
63 passes that name as an argument to the dictionary’s get function. If the name is found,
its associated value (the friend’s birthday) is returned and displayed. If the name is not
found, the string 'Not found.' is displayed.

The add function is next.

Program 10-2 (birthdays.py: add function)

65 # The add function adds a new entry into the
66 # birthdays dictionary.
67 def add(birthdays):
68 # Get a name and birthday.
69 name = input('Enter a name: ')
70 bday = input('Enter a birthday: ')
71
72 # If the name does not exist, add it.
73 if name not in birthdays:
74 birthdays[name] = bday
75 else:
76 print('That entry already exists.')
77

The purpose of the add function is to allow the user to add a new birthday to the diction-
ary. It accepts the dictionary as an argument. Lines 69 and 70 prompt the user to enter a
name and a birthday. The if statement in line 73 determines whether the name is not
already in the dictionary. If not, line 74 adds the new name and birthday to the dictionary.
Otherwise, a message indicating that the entry already exists is printed in line 76.

The change function is next.

Program 10-2 (birthdays.py: change function)

78 # The change function changes an existing
79 # entry in the birthdays dictionary.
80 def change(birthdays):
81 # Get a name to look up.
82 name = input('Enter a name: ')
83

390 Chapter 10 Dictionaries and Sets

10.1 Dictionaries 391

84 if name in birthdays:
85 # Get a new birthday.
86 bday = input('Enter the new birthday: ')
87
88 # Update the entry.
89 birthdays[name] = bday
90 else:
91 print('That name is not found.')
92

The purpose of the change function is to allow the user to change an existing birthday in
the dictionary. It accepts the dictionary as an argument. Line 82 gets a name from the user.
The if statement in line 84 determines whether the name is in the dictionary. If so, line 86
gets the new birthday, and line 89 stores that birthday in the dictionary. If the name is not
in the dictionary, line 91 prints a message indicating so.

The delete function is next.

Program 10-2 (birthdays.py: change function)

93 # The delete function deletes an entry from the
94 # birthdays dictionary.
95 def delete(birthdays):
96 # Get a name to look up.
97 name = input('Enter a name: ')
98
99 # If the name is found, delete the entry.
100 if name in birthdays:
101 del birthdays[name]
102 else:
103 print('That name is not found.')
104
105 # Call the main function.
106 main()

The purpose of the delete function is to allow the user to delete an existing birthday from
the dictionary. It accepts the dictionary as an argument. Line 97 gets a name from the user.
The if statement in line 100 determines whether the name is in the dictionary. If so, line
101 deletes it. If the name is not in the dictionary, line 103 prints a message indicating so.

Program Output (with input shown in bold)

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday

(program output continues)

392 Chapter 10 Dictionaries and Sets

Program Output (continued)

4. Delete a birthday
5. Quit the program

Enter your choice: 2 e

Enter a name: Cameron e

Enter a birthday: 10/12/1990 e

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday
4. Delete a birthday
5. Quit the program

Enter your choice: 2 e

Enter a name: Kathryn e

Enter a birthday: 5/7/1989 e

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday
4. Delete a birthday
5. Quit the program

Enter your choice: 1 e

Enter a name: Cameron e

10/12/1990

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday
4. Delete a birthday
5. Quit the program

Enter your choice: 1 e

Enter a name: Kathryn e

5/7/1989

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday

10.1 Dictionaries 393

4. Delete a birthday
5. Quit the program

Enter your choice: 3 e

Enter a name: Kathryn e

Enter the new birthday: 5/7/1988 e

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday
4. Delete a birthday
5. Quit the program

Enter your choice: 1 e

Enter a name: Kathryn e

5/7/1988

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday
4. Delete a birthday
5. Quit the program

Enter your choice: 4 e

Enter a name: Cameron e

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday
4. Delete a birthday
5. Quit the program

Enter your choice: 1 e

Enter a name: Cameron e

Not found.

Friends and Their Birthdays

1. Look up a birthday
2. Add a new birthday
3. Change a birthday
4. Delete a birthday
5. Quit the program
Enter your choice: 5 e

394 Chapter 10 Dictionaries and Sets

CheckPoint

10.1 An element in a dictionary has two parts. What are they called?

10.2 Which part of a dictionary element must be immutable?

10.3 Suppose 'start' : 1472 is an element in a dictionary. What is the key? What is
the value?

10.4 Suppose a dictionary named employee has been created. What does the
following statement do?

employee['id'] = 54321

10.5 What will the following code display?

stuff = {1 : 'aaa', 2 : 'bbb', 3 : 'ccc'}
print(stuff[3])

10.6 How can you determine whether a key-value pair exists in a dictionary?

10.7 Suppose a dictionary named inventory exists. What does the following statement do?

del inventory[654]

10.8 What will the following code display?

stuff = {1 : 'aaa', 2 : 'bbb', 3 : 'ccc'}
print(len(stuff))

10.9 What will the following code display?

stuff = {1 : 'aaa', 2 : 'bbb', 3 : 'ccc'}
for k in stuff:

print(k)

10.10 What is the difference between the dictionary methods pop and popitem?

10.11 What does the items method return?

10.12 What does the keys method return?

10.13 What does the values method return?

10.2 Sets

CONCEPT: A set contains a collection of unique values and works like a mathe-
matical set.

A set is an object that stores a collection of data in the same way as mathematical sets. Here
are some important things to know about sets:

• All the elements in a set must be unique. No two elements can have the same value.
• Sets are unordered, which means that the elements in a set are not stored in any par-

ticular order.
• The elements that are stored in a set can be of different data types.

394 Chapter 10 Dictionaries and Sets

VideoNote
Introduction
to Sets

10.2 Sets 395

Creating a Set
To create a set, you have to call the built-in set function. Here is an example of how you
create an empty set:

myset = set()

After this statement executes, the myset variable will reference an empty set. You can also
pass one argument to the set function. The argument that you pass must be an object that
contains iterable elements, such as a list, a tuple, or a string. The individual elements of the
object that you pass as an argument become elements of the set. Here is an example:

myset = set(['a', 'b', 'c'])

In this example we are passing a list as an argument to the set function. After this statement
executes, the myset variable references a set containing the elements 'a', 'b', and 'c'.

If you pass a string as an argument to the set function, each individual character in the
string becomes a member of the set. Here is an example:

myset = set('abc')

After this statement executes, the myset variable will reference a set containing the elements
'a', 'b', and 'c'.

Sets cannot contain duplicate elements. If you pass an argument containing duplicate ele-
ments to the set function, only one of the duplicated elements will appear in the set. Here
is an example:

myset = set('aaabc')

The character 'a' appears multiple times in the string, but it will appear only once in the
set. After this statement executes, the myset variable will reference a set containing the ele-
ments 'a', 'b', and 'c'.

What if you want to create a set in which each element is a string containing more than one
character? For example, how would you create a set containing the elements 'one', 'two',
and 'three'? The following code does not accomplish the task because you can pass no
more than one argument to the set function:

This is an ERROR!
myset = set('one', 'two', 'three')

The following does not accomplish the task either:

This does not do what we intend.
myset = set('one two three')

After this statement executes, the myset variable will reference a set containing the elements
'o', 'n', 'e', ' ', 't', 'w', 'h', and 'r'. To create the set that we want, we have to pass
a list containing the strings 'one', 'two', and 'three' as an argument to the set function.
Here is an example:

OK, this works.
myset = set(['one', 'two', 'three'])

After this statement executes, the myset variable will reference a set containing the elements
'one', 'two', and 'three'.

396 Chapter 10 Dictionaries and Sets

Getting the Number of Elements in a Set
As with lists, tuples, and dictionaries, you can use the len function to get the number of
elements in a set. The following interactive session demonstrates:

1 >>> myset = set([1, 2, 3, 4, 5]) e

2 >>> len(myset) e

3 5
4 >>>

Adding and Removing Elements
Sets are mutable objects, so you can add items to them and remove items from them. You use
the add method to add an element to a set. The following interactive session demonstrates:

1 >>> myset = set() e

2 >>> myset.add(1) e

3 >>> myset.add(2) e

4 >>> myset.add(3) e

5 >>> myset e

6 {1, 2, 3}
7 >>> myset e.add(2) e

8 >>> myset
9 {1, 2, 3}

The statement in line 1 creates an empty set and assigns it to the myset variable. The state-
ments in lines 2 through 4 add the values 1, 2, and 3 to the set. Line 5 displays the contents
of the set, which is shown in line 6.

The statement in line 7 attempts to add the value 2 to the set. The value 2 is already in the
set, however. If you try to add a duplicate item to a set with the add method, the method
does not raise an exception. It simply does not add the item.

You can add a group of elements to a set all at one time with the update method. When
you call the update method as an argument, you pass an object that contains iterable ele-
ments, such as a list, a tuple, string, or another set. The individual elements of the object
that you pass as an argument become elements of the set. The following interactive session
demonstrates:

1 >>> myset = set([1, 2, 3]) e

2 >>> myset.update([4, 5, 6]) e

3 >>> myset e

4 {1, 2, 3, 4, 5, 6}
5 >>>

The statement in line 1 creates a set containing the values 1, 2, and 3. Line 2 adds the val-
ues 4, 5, and 6. The following session shows another example:

1 >>> set1 = set([1, 2, 3]) e

2 >>> set2 = set([8, 9, 10]) e

3 >>> set1.update(set2) e

4 >>> set1

10.2 Sets 397

5 {1, 2, 3, 8, 9, 10}
6 >>> set2 e

7 {8, 9, 10}
8 >>>

Line 1 creates a set containing the values 1, 2, and 3, and assigns it to the set1 variable.
Line 2 creates a set containing the values 8, 9, and 10 and assigns it to the set2 variable.
Line 3 calls the set1.update method, passing set2 as an argument. This causes the ele-
ment of set2 to be added to set1. Notice that set2 remains unchanged. The following ses-
sion shows another example:

1 >>> myset = set([1, 2, 3]) e

2 >>> myset.update('abc') e

3 >>> myset e

4 {'a', 1, 2, 3, 'c', 'b'}
5 >>>

The statement in line 1 creates a set containing the values 1, 2, and 3. Line 2 calls the
myset.update method, passing the string 'abc' as an argument. This causes the each
character of the string to be added as an element to myset.

You can remove an item from a set with either the remove method or the discard method.
You pass the item that you want to remove as an argument to either method, and that item
is removed from the set. The only difference between the two methods is how they behave
when the specified item is not found in the set. The remove method raises a KeyError
exception, but the discard method does not raise an exception. The following interactive
session demonstrates:

1 >>> myset = set([1, 2, 3, 4, 5]) e

2 >>> myset e

3 {1, 2, 3, 4, 5}
4 >>> myset.remove(1) e

5 >>> myset e

6 {2, 3, 4, 5}
7 >>> myset.discard(5) e

8 >>> myset e

9 {2, 3, 4}
10 >>> myset.discard(99) e

11 >>> myset.remove(99) e

12 Traceback (most recent call last):
13 File "<pyshell#12>", line 1, in <module>
14 myset.remove(99)
15 KeyError: 99
16 >>>

Line 1 creates a set with the elements 1, 2, 3, 4, and 5. Line 2 displays the contents of the
set, which is shown in line 3. Line 4 calls the remove method to remove the value 1 from
the set. You can see in the output shown in line 6 that the value 1 is no longer in the set.
Line 7 calls the discard method to remove the value 5 from the set. You can see in the out-
put in line 9 that the value 5 is no longer in the set. Line 10 calls the discard method to
remove the value 99 from the set. The value is not found in the set, but the discard method

398 Chapter 10 Dictionaries and Sets

does not raise an exception. Line 11 calls the remove method to remove the value 99 from
the set. Because the value is not in the set, a KeyError exception is raised, as shown in lines
12 through 15.

You can clear all the elements of a set by calling the clear method. The following interac-
tive session demonstrates:

1 >>> myset = set([1, 2, 3, 4, 5]) e

2 >>> myset e

3 {1, 2, 3, 4, 5}
4 >>> myset.clear() e

5 >>> myset e

6 set()
7 >>>

The statement in line 4 calls the clear method to clear the set. Notice in line 6 that when
we display the contents of an empty set, the interpreter displays set().

Using the for Loop to Iterate over a Set
You can use the for loop in the following general format to iterate over all the elements
in a set:

for var in set:
statement
statement
etc.

In the general format, var is the name of a variable and set is the name of a set. This loop
iterates once for each element in the set. Each time the loop iterates, var is assigned an ele-
ment. The following interactive session demonstrates:

1 >>> myset = set(['a', 'b', 'c']) e

2 >>> for val in myset: e

3 print(val) e e

4
5 a
6 c
7 b
8 >>>

Lines 2 through 3 contain a for loop that iterates once for each element of the myset set.
Each time the loop iterates, an element of the set is assigned to the val variable. Line 3
prints the value of the val variable. Lines 5 through 7 show the output of the loop.

Using the in and not in Operators to Test
for a Value in a Set
You can use the in operator to determine whether a value exists in a set. The following
interactive session demonstrates:

10.2 Sets 399

1 >>> myset = set([1, 2, 3]) e

2 >>> if 1 in myset: e

3 print('The value 1 is in the set.') e e

4
5 The value 1 is in the set.
6 >>>

The if statement in line 2 determines whether the value 1 is in the myset set. If it is, the
statement in line 3 displays a message.

You can also use the not in operator to determine if a value does not exist in a set, as
demonstrated in the following session:

1 >>> myset = set([1, 2, 3]) e

2 >>> if 99 not in myset: e

3 print('The value 99 is not in the set.') e e

4
5 The value 99 is not in the set.
6 >>>

Finding the Union of Sets
The union of two sets is a set that contains all the elements of both sets. In Python, you can
call the union method to get the union of two sets. Here is the general format:

set1.union(set2)

In the general format, set1 and set2 are sets. The method returns a set that contains the
elements of both set1 and set2. The following interactive session demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([3, 4, 5, 6]) e

3 >>> set3 = set1.union(set2) e

4 >>> set3 e

5 {1, 2, 3, 4, 5, 6}
6 >>>

The statement in line 3 calls the set1 object’s union method, passing set2 as an argument.
The method returns a set that contains all the elements of set1 and set2 (without dupli-
cates, of course). The resulting set is assigned to the set3 variable.

You can also use the | operator to find the intersection of two sets. Here is the general for-
mat of an expression using the | operator with two sets:

set1 | set2

In the general format, set1 and set2 are sets. The expression returns a set that contains
the elements of both set1 and set2. The following interactive session demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([3, 4, 5, 6]) e

3 >>> set3 = set1 | set2 e

4 >>> set3 e

5 {1, 2, 3, 4, 5, 6}
6 >>>

400 Chapter 10 Dictionaries and Sets

Finding the Intersection of Sets
The intersection of two sets is a set that contains only the elements that are found in both
sets. In Python, you can call the intersection method to get the intersection of two sets.
Here is the general format:

set1.intersection(set2)

In the general format, set1 and set2 are sets. The method returns a set that contains the ele-
ments that are found in both set1 and set2. The following interactive session demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([3, 4, 5, 6]) e

3 >>> set3 = set1.intersection(set2) e

4 >>> set3 e

5 {3, 4}
6 >>>

The statement in line 3 calls the set1 object’s intersection method, passing set2 as an
argument. The method returns a set that contains the elements that are found in both set1
and set2. The resulting set is assigned to the set3 variable.

You can also use the & operator to find the intersection of two sets. Here is the general for-
mat of an expression using the & operator with two sets:

set1 & set2

In the general format, set1 and set2 are sets. The expression returns a set that contains
the elements that are found in both set1 and set2. The following interactive session
demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([3, 4, 5, 6]) e

3 >>> set3 = set1 & set2 e

4 >>> set3 e

5 {3, 4}
6 >>>

Finding the Difference of Sets
The difference of set1 and set2 are the elements that appear in set1 but do not appear
in set2. In Python, you can call the difference method to get the difference of two sets.
Here is the general format:

set1.difference(set2)

In the general format, set1 and set2 are sets. The method returns a set that contains the ele-
ments that are found in set1 but not in set2. The following interactive session demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([3, 4, 5, 6]) e

3 >>> set3 = set1.difference(set2) e

4 >>> set3 e

5 {1, 2}
6 >>>

10.2 Sets 401

You can also use the – operator to find the difference of two sets. Here is the general for-
mat of an expression using the – operator with two sets:

set1 - set2

In the general format, set1 and set2 are sets. The expression returns a set that contains
the elements that are found in set1 but not in set2. The following interactive session
demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([3, 4, 5, 6]) e

3 >>> set3 = set1 - set2 e

4 >>> set3 e

5 {1, 2}
6 >>>

Finding the Symmetric Difference of Sets
The symmetric difference of two sets is a set that contains the elements that are not shared
by the sets. In other words, it is the elements that are in one set but not in both. In Python,
you can call the symmetric_difference method to get the symmetric difference of two
sets. Here is the general format:

set1.symmetric_difference(set2)

In the general format, set1 and set2 are sets. The method returns a set that contains the
elements that are found in either set1 or set2 but not both sets. The following interactive
session demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([3, 4, 5, 6]) e

3 >>> set3 = set1.symmetric_difference(set2) e

4 >>> set3 e

5 {1, 2, 5, 6}
6 >>>

You can also use the ^ operator to find the symmetric difference of two sets. Here is the
general format of an expression using the ^ operator with two sets:

set1 ^ set2

In the general format, set1 and set2 are sets. The expression returns a set that contains
the elements that are found in either set1 or set2 but not both sets. The following inter-
active session demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([3, 4, 5, 6]) e

3 >>> set3 = set1 ^ set2 e

4 >>> set3 e

5 {1, 2, 5, 6}
6 >>>

402 Chapter 10 Dictionaries and Sets

Finding Subsets and Supersets
Suppose you have two sets and one of those sets contains all of the elements of the other
set. Here is an example:

set1 = set([1, 2, 3, 4])
set2 = set([2, 3])

In this example, set1 contains all the elements of set2, which means that set2 is a subset
of set1. It also means that set1 is a superset of set2. In Python, you can call the issubset
method to determine whether one set is a subset of another. Here is the general format:

set2.issubset(set1)

In the general format, set1 and set2 are sets. The method returns True if set2 is a sub-
set of set1. Otherwise, it returns False. You can call the issuperset method to deter-
mine whether one set is a superset of another. Here is the general format:

set1.issuperset(set2)

In the general format, set1 and set2 are sets. The method returns True if set1 is a super-
set of set2. Otherwise, it returns False. The following interactive session demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([2, 3]) e

3 >>> set2.issubset(set1) e

4 True
5 >>> set1.issuperset(set2) e

6 True
7 >>>

You can also use the <= operator to determine whether one set is a subset of another and
the >= operator to determine whether one set is a superset of another. Here is the general
format of an expression using the <= operator with two sets:

set2 <= set1

In the general format, set1 and set2 are sets. The expression returns True if set2 is a sub-
set of set1. Otherwise, it returns False. Here is the general format of an expression using
the >= operator with two sets:

set1 >= set2

In the general format, set1 and set2 are sets. The expression returns True if set1 is a sub-
set of set2. Otherwise, it returns False. The following interactive session demonstrates:

1 >>> set1 = set([1, 2, 3, 4]) e

2 >>> set2 = set([2, 3]) e

3 >>> set2 <= set1 e

4 True
5 >>> set1 >= set2 e

6 True
7 >>> set1 <= set2 e

8 False

10.2 Sets 403

In the Spotlight:
Set Operations
In this section you will look at Program 10-3, which demonstrates various set operations.
The program creates two sets: one that holds the names of students on the baseball team
and another that holds the names of students on the basketball team. The program then
performs the following operations:

• It finds the intersection of the sets to display the names of students who play both
sports.

• It finds the union of the sets to display the names of students who play either sport.
• It finds the difference of the baseball and basketball sets to display the names of stu-

dents who play baseball but not basketball.
• It finds the difference of the basketball and baseball (basketball – baseball) sets to dis-

play the names of students who play basketball but not baseball. It also finds the dif-
ference of the baseball and basketball (baseball – basketball) sets to display the names
of students who play baseball but not basketball.

• It finds the symmetric difference of the basketball and baseball sets to display the
names of students who play one sport but not both.

Program 10-3 (sets.py)

1 # This program demonstrates various set operations.
2 baseball = set(['Jodi', 'Carmen', 'Aida', 'Alicia'])
3 basketball = set(['Eva', 'Carmen', 'Alicia', 'Sarah'])
4
5 # Display members of the baseball set.
6 print('The following students are on the baseball team:')
7 for name in baseball:
8 print(name)
9
10 # Display members of the basketball set.
11 print()
12 print('The following students are on the basketball team:')
13 for name in basketball:
14 print(name)
15
16 # Demonstrate intersection
17 print()
18 print('The following students play both baseball and basketball:')
19 for name in baseball.intersection(basketball):
20 print(name)
21
22 # Demonstrate union
23 print()
24 print('The following students play either baseball or basketball:')

(program continues)

404 Chapter 10 Dictionaries and Sets

Program 10-3 (continued)

25 for name in baseball.union(basketball):
26 print(name)
27
28 # Demonstrate difference of baseball and basketball
29 print()
30 print('The following students play baseball, but not basketball:')
31 for name in baseball.difference(basketball):
32 print(name)
33
34 # Demonstrate difference of basketball and baseball
35 print()
36 print('The following students play basketball, but not baseball:')
37 for name in basketball.difference(baseball):
38 print(name)
39
40 # Demonstrate symmetric difference
41 print()
42 print('The following students play one sport, but not both:')
43 for name in baseball.symmetric_difference(basketball):
44 print(name)

Program Output

The following students are on the baseball team:
Jodi
Aida
Carmen
Alicia

The following students are on the basketball team:
Sarah
Eva
Alicia
Carmen

The following students play both baseball and basketball:
Alicia
Carmen

The following students play either baseball or basketball:
Sarah
Alicia
Jodi
Eva
Aida
Carmen

The following students play baseball but not basketball:
Jodi
Aida

10.2 Sets 405

The following students play basketball but not baseball:
Sarah
Eva

The following students play one sport but not both:
Sarah
Aida
Jodi
Eva

CheckPoint

10.14 Are the elements of a set ordered or unordered?

10.15 Does a set allow you to store duplicate elements?

10.16 How do you create an empty set?

10.17 After the following statement executes, what elements will be stored in the
myset set?

myset = set('Jupiter')

10.18 After the following statement executes, what elements will be stored in the
myset set?

myset = set(25)

10.19 After the following statement executes, what elements will be stored in the myset
set?

myset = set('www xxx yyy zzz')

10.20 After the following statement executes, what elements will be stored in the myset
set?

myset = set([1, 2, 2, 3, 4, 4, 4])

10.21 After the following statement executes, what elements will be stored in the myset
set?

myset = set(['www', 'xxx', 'yyy', 'zzz'])

10.22 How do you determine the number of elements in a set?

10.23 After the following statement executes, what elements will be stored in the myset
set?

myset = set([10, 9, 8])
myset.update([1, 2, 3])

10.24 After the following statement executes, what elements will be stored in the myset
set?

myset = set([10, 9, 8])
myset.update('abc')

10.25 What is the difference between the remove and discard methods?

406 Chapter 10 Dictionaries and Sets

10.26 How can you determine whether a specific element exists in a set?

10.27 After the following code executes, what elements will be members of set3?

set1 = set([10, 20, 30])
set2 = set([100, 200, 300])
set3 = set1.union(set2)

10.28 After the following code executes, what elements will be members of set3?

set1 = set([1, 2, 3, 4])
set2 = set([3, 4, 5, 6])
set3 = set1.intersection(set2)

10.29 After the following code executes, what elements will be members of set3?

set1 = set([1, 2, 3, 4])
set2 = set([3, 4, 5, 6])
set3 = set1.difference(set2)

10.30 After the following code executes, what elements will be members of set3?

set1 = set([1, 2, 3, 4])
set2 = set([3, 4, 5, 6])
set3 = set2.difference(set1)

10.31 After the following code executes, what elements will be members of set3?

set1 = set(['a', 'b', 'c'])
set2 = set(['b', 'c', 'd'])
set3 = set1.symmetric_difference(set2)

10.32 Look at the following code:

set1 = set([1, 2, 3, 4])
set2 = set([2, 3])

Which of the sets is a subset of the other?
Which of the sets is a superset of the other?

10.3 Serializing Objects

CONCEPT: Serializing a object is the process of converting the object to a stream of
bytes that can be saved to a file for later retrieval. In Python, object seri-
alization is called pickling.

In Chapter 7 you learned how to store data in a text file. Sometimes you need to store the
contents of a complex object, such as a dictionary or a set, to a file. The easiest way to save
an object to a file is to serialize the object. When an object is serialized, it is converted to a
stream of bytes that can be easily stored in a file for later retrieval.

In Python, the process of serializing an object is referred to as pickling. The Python stan-
dard library provides a module named pickle that has various functions for serializing, or
pickling, objects.

10.3 Serializing Objects 407

Once you import the pickle module, you perform the following steps to pickle an object:

• You open a file for binary writing.
• You call the pickle module’s dump method to pickle the object and write it to the

specified file.
• After you have pickled all the objects that you want to save to the file, you close the file.

Let’s take a more detailed look at these steps. To open a file for binary writing, you use
'wb' as the mode when you call the open function. For example, the following statement
opens a file named mydata.dat for binary writing:

outputfile = open('mydata.dat', 'wb')

Once you have opened a file for binary writing, you call the pickle module’s dump func-
tion. Here is the general format of the dump method:

pickle.dump(object, file)

In the general format, object is a variable that references the object you want to pickle,
and file is a variable that references a file object. After the function executes, the object
referenced by object will be serialized and written to the file. (You can pickle just about
any type of object, including lists, tuples, dictionaries, sets, strings, integers, and floating-
point numbers.)

You can save as many pickled objects as you want to a file. When you are finished, you call
the file object’s close method to close the file. The following interactive session provides a
simple demonstration of pickling a dictionary:

1 >>> import pickle e

2 >>> phonebook = {'Chris' : '555-1111', e

3 'Katie' : '555-2222', e

4 'Joanne' : '555-3333'} e

5 >>> output_file = open('phonebook.dat', 'wb') e

6 >>> pickle.dump(phonebook, output_file) e

7 >>> output_file.close() e

8 >>>

Let’s take a closer look at the session:

• Line 1 imports the pickle module.
• Lines 2 through 4 create a dictionary containing names (as keys) and phone numbers

(as values).
• Line 5 opens a file named phonebook.dat for binary writing.
• Line 6 calls the pickle module’s dump function to serialize the phonebook dictionary

and write it to the phonebook.dat file.
• Line 7 closes the phonebook.dat file.

At some point, you will need to retrieve, or unpickle, the objects that you have pickled.
Here are the steps that you perform:

• You open a file for binary reading.
• You call the pickle module’s load function to retrieve an object from the file and

unpickle it.
• After you have unpickled all the objects that you want from the file, you close the file.

408 Chapter 10 Dictionaries and Sets

Let’s take a more detailed look at these steps. To open a file for binary reading, you use
'rb' as the mode when you call the open function. For example, the following statement
opens a file named mydata.dat for binary reading:

inputfile = open('mydata.dat', 'rb')

Once you have opened a file for binary reading, you call the pickle module’s load func-
tion. Here is the general format of a statement that calls the load function:

object = pickle.load(file)

In the general format, object is a variable, and file is a variable that references a file
object. After the function executes, the object variable will reference an object that was
retrieved from the file and unpickled.

You can unpickle as many objects as necessary from the file. (If you try to read past the end
of the file, the load function will raise an EOFError exception.) When you are finished, you
call the file object’s close method to close the file. The following interactive session pro-
vides a simple demonstration of unpickling the phonebook dictionary that was pickled in
the previous session:

1 >>> import pickle e

2 >>> input_file = open('phonebook.dat', 'rb') e

3 >>> pb = pickle.load(inputfile) e

4 >>> pb e

5 {'Chris': '555-1111', 'Joanne': '555-3333', 'Katie': '555-2222'}
6 >>> input_file.close() e

7 >>>

Let’s take a closer look at the session:

• Line 1 imports the pickle module.
• Line 2 opens a file named phonebook.dat for binary reading.
• Line 3 calls the pickle module’s load function to retrieve and unpickle an object

from the phonebook.dat file. The resulting object is assigned to the pb variable.
• Line 4 displays the dictionary referenced by the pb variable. The output is shown in

line 5.
• Line 6 closes the phonebook.dat file.

Program 10-4 shows an example program that demonstrates object pickling. It prompts the
user to enter personal information (name, age, and weight) about as many people as he or
she wishes. Each time the user enters information about a person, the information is stored
in a dictionary, and then the dictionary is pickled and saved to a file named info.dat. After
the program has finished, the info.dat file will hold one pickled dictionary object for
every person about whom the user entered information.

Program 10-4 (pickle_objects.py)

1 # This program demonstrates object pickling.
2 import pickle
3
4 # main function

10.3 Serializing Objects 409

5 def main():
6 again = 'y' # To control loop repetition
7
8 # Open a file for binary writing.
9 output_file = open('info.dat', 'wb')

10
11 # Get data until the user wants to stop.
12 while again.lower() == 'y':
13 # Get data about a person and save it.
14 save_data(output_file)
15
16 # Does the user want to enter more data?
17 again = input('Enter more data? (y/n): ')
18
19 # Close the file.
20 output_file.close()
21
22 # The save_data function gets data about a person,
23 # stores it in a dictionary, and then pickles the
24 # dictionary to the specified file.
25 def save_data(file):
26 # Create an empty dictionary.
27 person = {}
28
29 # Get data for a person and store
30 # it in the dictionary.
31 person['name'] = input('Name: ')
32 person['age'] = int(input('Age: '))
33 person['weight'] = float(input('Weight: '))
34
35 # Pickle the dictionary.
36 pickle.dump(person, file)
37
38 # Call the main function.
39 main()

Program Output (with input shown in bold)

Name: Angie e

Age: 25 e

Weight: 122 e

Enter more data? (y/n): y e

Name: Carl e

Age: 28 e

Weight: 175 e

Enter more data? (y/n): n e

410 Chapter 10 Dictionaries and Sets

Let’s take a closer look at the main function:

• The again variable that is initialized in line 6 is used to control loop repetitions.
• Line 9 opens the file info.dat for binary writing. The file object is assigned to the

output_file variable.
• The while loop that begins in line 12 repeats as long as the again variable references

'y' or 'Y'.
• Inside the while loop, line 14 calls the save_data function, passing the

output_file variable as an argument. The purpose of the save_data function is to
get data about a person and save it to the file as a pickled dictionary object.

• Line 17 prompts the user to enter y or n to indicate whether he or she wants to enter
more data. The input is assigned to the again variable.

• Outside the loop, line 20 closes the file.

Now, let’s look at the save_data function:

• Line 27 creates an empty dictionary, referenced by the person variable.
• Line 31 prompts the user to enter the person’s name and stores the input in the

person dictionary. After this statement executes, the dictionary will contain a key-
value pair that has the string 'name' as the key and the user’s input as the value.

• Line 32 prompts the user to enter the person’s age and stores the input in the person
dictionary. After this statement executes, the dictionary will contain a key-value pair
that has the string 'age' as the key and the user’s input, as an int, as the value.

• Line 33 prompts the user to enter the person’s weight and stores the input in the person
dictionary. After this statement executes, the dictionary will contain a key-value pair
that has the string 'weight' as the key and the user’s input, as a float, as the value.

• Line 36 pickles the person dictionary and writes it to the file.

Program 10-5 demonstrates how the dictionary objects that have been pickled and saved to
the info.dat file can be retrieved and unpickled.

Program 10-5 (unpickle_objects.py)

1 # This program demonstrates object unpickling.
2 import pickle
3
4 # main function
5 def main():
6 end_of_file = False # To indicate end of file
7
8 # Open a file for binary reading.
9 input_file = open('info.dat', 'rb')

10
11 # Read to the end of the file.
12 while not end_of_file:
13 try:
14 # Unpickle the next object.
15 person = pickle.load(input_file)
16

10.3 Serializing Objects 411

17 # Display the object.
18 display_data(person)
19 except EOFError:
20 # Set the flag to indicate the end
21 # of the file has been reached.
22 end_of_file = True
23
24 # Close the file.
25 input_file.close()
26
27 # The display_data function displays the person data
28 # in the dictionary that is passed as an argument.
29 def display_data(person):
30 print('Name:', person['name'])
31 print('Age:', person['age'])
32 print('Weight:', person['weight'])
33 print()
34
35 # Call the main function.
36 main()

Program Output
Name: Angie
Age: 25
Weight: 122.0

Name: Carl
Age: 28
Weight: 175.0

Let’s take a closer look at the main function:

• The end_of_file variable that is initialized in line 6 is used to indicate when the pro-
gram has reached the end of the info.dat file. Notice that the variable is initialized
with the Boolean value False.

• Line 9 opens the file info.dat for binary reading. The file object is assigned to the
input_file variable.

• The while loop that begins in line 12 repeats as long as end_of_file is False.
• Inside the while loop, a try/except statement appears in lines 13 through 22.
• Inside the try suite, line 15 reads an object from the file, unpickles it, and assigns it to

the person variable. If the end of the file has already been reached, this statement
raises an EOFError exception, and the program jumps to the except clause in 19.
Otherwise, line 18 calls the display_data function, passing the person variable as
an argument.

• When an EOFError exception occurs, line 22 sets the end_of_file variable to True.
This causes the while loop to stop iterating.

412 Chapter 10 Dictionaries and Sets

Now, let’s look at the display_data function:

• When the function is called, the person parameter references a dictionary that was
passed as an argument.

• Line 30 prints the value that is associated with the key 'name' in the person dictionary.
• Line 31 prints the value that is associated with the key 'age' in the person dictionary.
• Line 32 prints the value that is associated with the key 'weight' in the person

dictionary.
• Line 33 prints a blank line.

Checkpoint

10.33 What is object serialization?

10.34 When you open a file for the purpose of saving a pickled object to it, what file
access mode do you use?

10.35 When you open a file for the purpose of retrieving a pickled object from it, what
file access mode do you use?

10.36 What module do you import if you want to pickle objects?

10.37 What function do you call to pickle an object?

10.38 What function do you call to retrieve and unpickle an object?

Review Questions
Multiple Choice

1. You can use the _________ operator to determine whether a key exists in a dictionary.
a. &
b. in
c. ^
d. ?

2. You use _________ to delete an element from a dictionary.
a. The remove method
b. The erase method
c. The delete method
d. The del statement

3. The _________ function returns the number of elements in a dictionary:
a. size()
b. len()
c. elements()
d. count()

4. You can use _________ to create an empty dictionary.
a. {}
b. ()
c. []
d. empty()

Review Questions 413

5. The _________ method returns a randomly selected key-value pair from a dictionary.
a. pop()
b. random()
c. popitem()
d. rand_pop()

6. The _________ method returns the value associated with a specified key, and removes
that key-value pair from the dictionary.
a. pop()
b. random()
c. popitem()
d. rand_pop()

7. The _________ dictionary method returns the value associated with a specified key. If
the key is not found, it returns a default value.
a. pop()
b. key()
c. value()
d. get()

8. The _________ method returns all of a dictionary’s keys and their associated values as
a sequence of tuples.
a. keys_values()
b. values()
c. items()
d. get()

9. The following function returns the number of elements in a set:
a. size()
b. len()
c. elements()
d. count()

10. You can add one element to a set with this method.
a. append
b. add
c. update
d. merge

11. You can add a group of elements to a set with this method.
a. append
b. add
c. update
d. merge

12. This set method removes an element but does not raise an exception if the element is
not found.
a. remove
b. discard
c. delete
d. erase

414 Chapter 10 Dictionaries and Sets

13. This set method removes an element and raises an exception if the element is not found.
a. remove
b. discard
c. delete
d. erase

14. This operator can be used to find the union of two sets.
a. |
b. &
c. -
d. ^

15. This operator can be used to find the difference of two sets.
a. |
b. &
c. -
d. ^

16. This operator can be used to find the intersection of two sets.
a. |
b. &
c. -
d. ^

17. This operator can be used to find the symmetric difference of two sets.
a. |
b. &
c. -
d. ^

True or False

1. The keys in a dictionary must be mutable objects.

2. Dictionaries are not sequences.

3. A tuple can be a dictionary key.

4. A list can be a dictionary key.

5. The dictionary method popitem does not raise an exception if it is called on an empty
dictionary.

6. The following statement creates an empty dictionary:

mydct = {}

7. The following statement creates an empty set:

myset = ()

8. Sets store their elements in an unordered fashion.

9. You can store duplicate elements in a set.

10. The remove method raises an exception if the specified element is not found in the
set.

Review Questions 415

Short Answer

1. What will the following code display?

dct = {'Monday':1, 'Tuesday':2, 'Wednesday':3}
print(dct['Tuesday'])

2. What will the following code display?

dct = {'Monday':1, 'Tuesday':2, 'Wednesday':3}
print(dct.get('Monday', 'Not found'))

3. What will the following code display?

dct = {'Monday':1, 'Tuesday':2, 'Wednesday':3}
print(dct.get('Friday', 'Not found'))

4. What will the following code display?

stuff = {'aaa' : 111, 'bbb' : 222, 'ccc' : 333}
print(stuff['bbb'])

5. How do you delete an element from a dictionary?

6. How do you determine the number of elements that are stored in a dictionary?

7. What will the following code display?

dct = {1:[0, 1], 2:[2, 3], 3:[4, 5]}
print(dct[3])

8. What values will the following code display? (Don’t worry about the order in which
they will be displayed.)

dct = {1:[0, 1], 2:[2, 3], 3:[4, 5]}
for k in dct:

print(k)

9. After the following statement executes, what elements will be stored in the myset set?

myset = set('Saturn')

10. After the following statement executes, what elements will be stored in the myset set?

myset = set(10)

11. After the following statement executes, what elements will be stored in the myset set?

myset = set('a bb ccc dddd')

12. After the following statement executes, what elements will be stored in the myset set?

myset = set([2, 4, 4, 6, 6, 6, 6])

13. After the following statement executes, what elements will be stored in the myset set?

myset = set(['a', 'bb', 'ccc', 'dddd'])

14. What will the following code display?

myset = set('1 2 3')
print(len(myset))

15. After the following code executes, what elements will be members of set3?

set1 = set([10, 20, 30, 40])
set2 = set([40, 50, 60])
set3 = set1.union(set2)

416 Chapter 10 Dictionaries and Sets

16. After the following code executes, what elements will be members of set3?

set1 = set(['o', 'p', 's', 'v'])
set2 = set(['a', 'p', 'r', 's'])
set3 = set1.intersection(set2)

17. After the following code executes, what elements will be members of set3?

set1 = set(['d', 'e', 'f'])
set2 = set(['a', 'b', 'c', 'd', 'e'])
set3 = set1.difference(set2)

18. After the following code executes, what elements will be members of set3?

set1 = set(['d', 'e', 'f'])
set2 = set(['a', 'b', 'c', 'd', 'e'])
set3 = set2.difference(set1)

19. After the following code executes, what elements will be members of set3?

set1 = set([1, 2, 3])
set2 = set([2, 3, 4])
set3 = set1.symmetric_difference(set2)

20. Look at the following code:

set1 = set([100, 200, 300, 400, 500])
set2 = set([200, 400, 500])

Which of the sets is a subset of the other?
Which of the sets is a superset of the other?

Algorithm Workbench

1. Write a statement that creates a dictionary containing the following key-value pairs:

'a' : 1
'b' : 2
'c' : 3

2. Write a statement that creates an empty dictionary.

3. Assume the variable dct references a dictionary. Write an if statement that determines
whether the key 'James' exists in the dictionary. If so, display the value that is associ-
ated with that key. If the key is not in the dictionary, display a message indicating so.

4. Assume the variable dct references a dictionary. Write an if statement that determines
whether the key 'Jim' exists in the dictionary. If so, delete 'Jim' and its associated
value.

5. Write code to create a set with the following integers as members: 10, 20, 30, and 40.

6. Assume each of the variables set1 and set2 references a set. Write code that creates
another set containing all the elements of set1 and set2 and assigns the resulting set
to the variable set3.

7. Assume each of the variables set1 and set2 references a set. Write code that creates
another set containing only the elements that are found in both set1 and set2 and
assigns the resulting set to the variable set3.

Programming Exercises 417

8. Assume each of the variables set1 and set2 references a set. Write code that creates
another set containing the elements that appear in set1 but not in set2 and assigns the
resulting set to the variable set3.

9. Assume each of the variables set1 and set2 references a set. Write code that creates
another set containing the elements that appear in set2 but not in set1 and assigns the
resulting set to the variable set3.

10. Assume each of the variables set1 and set2 references a set. Write code that creates
another set containing the elements that are not shared by set1 and set2 and assigns
the resulting set to the variable set3.

11. Assume the variable dct references a dictionary. Write code that pickles the dictionary
and saves it to a file named mydata.dat.

12. Write code that retrieves and unpickles the dictionary that you pickled in Algorithm
Workbench 11.

Programming Exercises
1. Course information

Write a program that creates a dictionary containing course numbers and the room num-
bers of the rooms where the courses meet. The dictionary should have the following key-
value pairs:

Course Number (key) Room Number (value)

CS101 3004

CS102 4501

CS103 6755

NT110 1244

CM241 1411

Course Number (key) Instructor (value)

CS101 Haynes

CS102 Alvarado

CS103 Rich

NT110 Burke

CM241 Lee

The program should also create a dictionary containing course numbers and the names of
the instructors that teach each course. The dictionary should have the following key-value
pairs:

418 Chapter 10 Dictionaries and Sets

The program should also create a dictionary containing course numbers and the meeting
times of each course. The dictionary should have the following key-value pairs:

Course Number (key) Meeting Time (value)

CS101 8:00 a.m.

CS102 9:00 a.m.

CS103 10:00 a.m.

NT110 11:00 a.m.

CM241 1:00 p.m.

The program should let the user enter a course number, and then it should display the
course’s room number, instructor, and meeting time.

2. Capital Quiz

Write a program that creates a dictionary containing the U.S. states as keys and their cap-
itals as values. (Use the Internet to get a list of the states and their capitals.) The program
should then randomly quiz the user by displaying the name of a state and asking the user
to enter that state’s capital. The program should keep a count of the number of correct and
incorrect responses. (As an alternative to the U.S. states, the program can use the names of
countries and their capitals.)

3. File Encryption and Decryption

Write a program that uses a dictionary to assign “codes” to each letter of the alphabet. For
example:

codes = { 'A' : '%', 'a' : '9', 'B' : '@', 'b' : '#', etc...}

Using this example, the letter A would be assigned the symbol %, the letter a would be
assigned the number 9, the letter B would be assigned the symbol @, and so forth.

The program should open a specified text file, read its contents, and then use the diction-
ary to write an encrypted version of the file’s contents to a second file. Each character in
the second file should contain the code for the corresponding character in the first file.

Write a second program that opens an encrypted file and displays its decrypted contents on
the screen.

4. Unique Words

Write a program that opens a specified text file and then displays a list of all the unique
words found in the file.

Hint: Store each word as an element of a set.

5. Word Frequency

Write a program that reads the contents of a text file. The program should create a dictio-
nary in which the keys are the individual words found in the file and the values are the
number of times each word appears. For example, if the word “the” appears 128 times,
the dictionary would contain an element with 'the' as the key and 128 as the value.
The program should either display the frequency of each word or create a second file
containing a list of each word and its frequency.

VideoNote
The CapitalQuiz
Problem

Programming Exercises 419

6. File Analysis

Write a program that reads the contents of two text files and compares them in the follow-
ing ways:

• It should display a list of all the unique words contained in both files.
• It should display a list of the words that appear in both files.
• It should display a list of the words that appear in the first file but not the second.
• It should display a list of the words that appear in the second file but not the first.
• It should display a list of the words that appear in either the first or second file but not both.

Hint: Use set operations to perform these analyses.

7. World Series Winners

In this chapter’s source code folder (available on the book’s companion Web site at www.
pearsonhighered.com/gaddis), you will find a text file named WorldSeriesWinners.txt.
This file contains a chronological list of the World Series’ winning teams from 1903
through 2009. The first line in the file is the name of the team that won in 1903, and the
last line is the name of the team that won in 2009. (Note that the World Series was not
played in 1904 or 1994. There are entries in the file indicating this.)

Write a program that reads this file and creates a dictionary in which the keys are the names
of the teams and each key’s associated value is the number of times the team has won the
World Series. The program should also create a dictionary in which the keys are the years
and each key’s associated value is the name of the team that won that year.

The program should prompt the user for a year in the range of 1903 through 2009. It
should then display the name of the team that won the World Series that year and the num-
ber of times that team has won the World Series.

8. Name and Email Addresses

Write a program that keeps names and email addresses in a dictionary as key-value pairs.
The program should display a menu that lets the user look up a person’s email address, add
a new name and email address, change an existing email address, and delete an existing
name and email address. The program should pickle the dictionary and save it to a file
when the user exits the program. Each time the program starts, it should retrieve the dic-
tionary from the file and unpickle it.

9. Blackjack Simulation

Previously in this chapter you saw the card_dealer.py program that simulates cards being
dealt from a deck. Enhance the program so it simulates a simplified version of the game of
Blackjack between two virtual players. The cards have the following values:

• Numeric cards are assigned the value they have printed on them. For example, the value
of the 2 of spades is 2, and the value of the 5 of diamonds is 5.

• Jacks, queens, and kings are valued at 10.
• Aces are valued at 1 or 11, depending on the player’s choice.

The program should deal cards to each player until one player’s hand is worth more than
21 points. When that happens, the other player is the winner. (It is possible that both play-
er’s hands will simultaneously exceed 21 points, in which case neither player wins.) The
program should repeat until all the cards have been dealt from the deck.

If a player is dealt an ace, the program should decide the value of the card according to the
following rule: The ace will be worth 11 points, unless that makes the player’s hand exceed
21 points. In that case, the ace will be worth 1 point.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

This page intentionally left blank

421

11.1 Procedural and Object-Oriented
Programming

CONCEPT: Procedural programming is a method of writing software. It is a pro-
gramming practice centered on the procedures or actions that take place
in a program. Object-oriented programming is centered on objects.
Objects are created from abstract data types that encapsulate data and
functions together.

There are primarily two methods of programming in use today: procedural and object-
oriented. The earliest programming languages were procedural, meaning a program was
made of one or more procedures. You can think of a procedure simply as a function that
performs a specific task such as gathering input from the user, performing calculations,
reading or writing files, displaying output, and so on. The programs that you have written
so far have been procedural in nature.

Typically, procedures operate on data items that are separate from the procedures. In a
procedural program, the data items are commonly passed from one procedure to another.
As you might imagine, the focus of procedural programming is on the creation of pro-
cedures that operate on the program’s data. The separation of data and the code that op-
erates on the data can lead to problems, however, as the program becomes larger and
more complex.

For example, suppose you are part of a programming team that has written an extensive
customer database program. The program was initially designed so that a customer’s

Classes and Object-
Oriented Programming11

TOPICS

11.1 Procedural and Object-Oriented
Programming

11.2 Classes

11.3 Working with Instances
11.4 Techniques for Designing Classes

C
H

A
P

T
E

R

422 Chapter 11 Classes and Object-Oriented Programming

name, address, and phone number were referenced by three variables. Your job was to
design several functions that accept those three variables as arguments and perform op-
erations on them. The software has been operating successfully for some time, but your
team has been asked to update it by adding several new features. During the revision
process, the senior programmer informs you that the customer’s name, address, and
phone number will no longer be stored in variables. Instead, they will be stored in a list.
This means that you will have to modify all of the functions that you have designed so
that they accept and work with a list instead of the three variables. Making these exten-
sive modifications not only is a great deal of work, but also opens the opportunity for er-
rors to appear in your code.

Whereas procedural programming is centered on creating procedures (functions), object-
oriented programming (OOP) is centered on creating objects. An object is a software entity
that contains both data and procedures. The data contained in an object is known as the
object’s data attributes. An object’s data attributes are simply variables that reference data.
The procedures that an object performs are known as methods. An object’s methods are
functions that perform operations on the object’s data attributes. The object is, conceptu-
ally, a self-contained unit that consists of data attributes and methods that operate on the
data attributes. This is illustrated in Figure 11-1.

Figure 11-1 An object contains data attributes and methods

Methods that operate
on the data attributes

Data attributes

Object

OOP addresses the problem of code and data separation through encapsulation and data
hiding. Encapsulation refers to the combining of data and code into a single object. Data
hiding refers to an object’s ability to hide its data attributes from code that is outside the
object. Only the object’s methods may directly access and make changes to the object’s data
attributes.

An object typically hides its data, but allows outside code to access its methods. As shown
in Figure 11-2, the object’s methods provide programming statements outside the object
with indirect access to the object’s data attributes.

11.1 Procedural and Object-Oriented Programming 423

When an object’s data attributes are hidden from outside code, and access to the data attri-
butes is restricted to the object’s methods, the data attributes are protected from accidental
corruption. In addition, the code outside the object does not need to know about the format
or internal structure of the object’s data. The code only needs to interact with the object’s
methods. When a programmer changes the structure of an object’s internal data attributes,
he or she also modifies the object’s methods so that they may properly operate on the data.
The way in which outside code interacts with the methods, however, does not change.

Object Reusability
In addition to solving the problems of code and data separation, the use of OOP has also
been encouraged by the trend of object reusability. An object is not a stand-alone program,
but is used by programs that need its services. For example, Sharon is a programmer who
has developed a set of objects for rendering 3D images. She is a math whiz and knows a lot
about computer graphics, so her objects are coded to perform all of the necessary 3D math-
ematical operations and handle the computer’s video hardware. Tom, who is writing a pro-
gram for an architectural firm, needs his application to display 3D images of buildings.
Because he is working under a tight deadline and does not possess a great deal of knowl-
edge about computer graphics, he can use Sharon’s objects to perform the 3D rendering (for
a small fee, of course!).

An Everyday Example of an Object
Imagine that your alarm clock is actually a software object. If it were, it would have the
following data attributes:

• current_second (a value in the range of 0–59)
• current_minute (a value in the range of 0–59)
• current_hour (a value in the range of 1–12)
• alarm_time (a valid hour and minute)
• alarm_is_set (True or False)

Figure 11-2 Code outside the object interacts with the object’s methods

Methods that operate
on the data attributes

Data attributes

Object

Code
outside the

object

424 Chapter 11 Classes and Object-Oriented Programming

As you can see, the data attributes are merely values that define the state that the alarm
clock is currently in. You, the user of the alarm clock object, cannot directly manipulate
these data attributes because they are private. To change a data attribute’s value, you
must use one of the object’s methods. The following are some of the alarm clock object’s
methods:

• set_time
• set_alarm_time
• set_alarm_on
• set_alarm_off

Each method manipulates one or more of the data attributes. For example, the set_time
method allows you to set the alarm clock’s time. You activate the method by pressing a but-
ton on top of the clock. By using another button, you can activate the set_alarm_time
method.

In addition, another button allows you to execute the set_alarm_on and set_alarm_off
methods. Notice that all of these methods can be activated by you, who are outside the
alarm clock. Methods that can be accessed by entities outside the object are known as
public methods.

The alarm clock also has private methods, which are part of the object’s private, internal
workings. External entities (such as you, the user of the alarm clock) do not have direct ac-
cess to the alarm clock’s private methods. The object is designed to execute these methods
automatically and hide the details from you. The following are the alarm clock object’s pri-
vate methods:

• increment_current_second
• increment_current_minute
• increment_current_hour
• sound_alarm

Every second the increment_current_second method executes. This changes the
value of the current_second data attribute. If the current_second data attribute is
set to 59 when this method executes, the method is programmed to reset current_second
to 0, and then cause the increment_current_minute method to execute. This method
adds 1 to the current_minute data attribute, unless it is set to 59. In that case, it
resets current_minute to 0 and causes the increment_current_hour method to
execute. The increment_current_minute method compares the new time to the
alarm_time. If the two times match and the alarm is turned on, the sound_alarm
method is executed.

Checkpoint

11.1 What is an object?

11.2 What is encapsulation?

11.3 Why is an object’s internal data usually hidden from outside code?

11.4 What are public methods? What are private methods?

11.2 Classes 425

11.2 Classes

CONCEPT: A class is code that specifies the data attributes and methods for a particular
type of object.

Now, let’s discuss how objects are created in software. Before an object can be created, it
must be designed by a programmer. The programmer determines the data attributes and
methods that are necessary, and then creates a class. A class is code that specifies the data
attributes and methods of a particular type of object. Think of a class as a “blueprint” that
objects may be created from. It serves a similar purpose as the blueprint for a house. The
blueprint itself is not a house, but is a detailed description of a house. When we use the
blueprint to build an actual house, we could say we are building an instance of the house
described by the blueprint. If we so desire, we can build several identical houses from the
same blueprint. Each house is a separate instance of the house described by the blueprint.
This idea is illustrated in Figure 11-3.

Figure 11-3 A blueprint and houses built from the blueprint

House Plan

Living Room

Bedroom

Blueprint that describes a house

Instances of the house described by the blueprint

Another way of thinking about the difference between a class and an object is to think of
the difference between a cookie cutter and a cookie. While a cookie cutter itself is not a
cookie, it describes a cookie. The cookie cutter can be used to make several cookies, as
shown in Figure 11-4. Think of a class as a cookie cutter and the objects created from the
class as cookies.

So, a class is a description of an object’s characteristics. When the program is running, it
can use the class to create, in memory, as many objects of a specific type as needed. Each
object that is created from a class is called an instance of the class.

VideoNote
Classes and
Objects

426 Chapter 11 Classes and Object-Oriented Programming

For example, Jessica is an entomologist (someone who studies insects) and she also enjoys
writing computer programs. She designs a program to catalog different types of insects. As
part of the program, she creates a class named Insect, which specifies characteristics that
are common to all types of insects. The Insect class is a specification that objects may be
created from. Next, she writes programming statements that create an object named
housefly, which is an instance of the Insect class. The housefly object is an entity that
occupies computer memory and stores data about a housefly. It has the data attributes and
methods specified by the Insect class. Then she writes programming statements that cre-
ate an object named mosquito. The mosquito object is also an instance of the Insect
class. It has its own area in memory, and stores data about a mosquito. Although the
housefly and mosquito objects are separate entities in the computer’s memory, they were
both created from the Insect class. This means that each of the objects has the data attrib-
utes and methods described by the Insect class. This is illustrated in Figure 11-5.

Figure 11-4 The cookie cutter metaphor

Cookie cutter

Cookies

Figure 11-5 The housefly and mosquito objects are instances of the Insect class

Insect
class

housefly
object

mosquito
object

The Insect class describes
the data attributes and

methods that a particular
type of object may have.

The housefly object is an
instance of the Insect class. It

has the data attributes and methods
described by the Insect class.

The mosquito object is an
instance of the Insect class. It

has the data attributes and methods
described by the Insect class.

Class Definitions
To create a class, you write a class definition. A class definition is a set of statements that
define a class’s methods and data attributes. Let’s look at a simple example. Suppose we are
writing a program to simulate the tossing of a coin. In the program we need to repeatedly

11.2 Classes 427

toss the coin and each time determine whether it landed heads up or tails up. Taking an
object-oriented approach, we will write a class named Coin that can perform the behaviors
of the coin.

Program 11-1 shows the class definition, which we will explain shortly. Note that this is
not a complete program. We will add to it as we go along.

Program 11-1 (Coin class, not a complete program)

1 import random
2
3 # The Coin class simulates a coin that can
4 # be flipped.
5
6 class Coin:
7
8 # The __init__ method initializes the
9 # sideup data attribute with 'Heads'.

10
11 def __init__(self):
12 self.sideup = 'Heads'
13
14 # The toss method generates a random number
15 # in the range of 0 through 1. If the number
16 # is 0, then sideup is set to 'Heads'.
17 # Otherwise, sideup is set to 'Tails'.
18
19 def toss(self):
20 if random.randint(0, 1) == 0:
21 self.sideup = 'Heads'
22 else:
23 self.sideup = 'Tails'
24
25 # The get_sideup method returns the value
26 # referenced by sideup.
27
28 def get_sideup(self):
29 return self.sideup

In line 1 we import the random module. This is necessary because we use the randint
function to generate a random number. Line 6 is the beginning of the class definition. It
begins with the keyword class, followed by the class name, which is Coin, followed by
a colon.

The same rules that apply to variable names also apply to class names. However, notice that
we started the class name, Coin, with an uppercase letter. This is not a requirement, but it
is a widely used convention among programmers. This helps to easily distinguish class
names from variable names when reading code.

428 Chapter 11 Classes and Object-Oriented Programming

The Coin class has three methods:

• The __init__ method appears in lines 11 through 12.
• The toss method appears in lines 19 through 23.
• The get_sideup method appears in lines 28 through 29.

Except for the fact that they appear inside a class, notice that these method definitions look
like any other function definition in Python. They start with a header line, which is fol-
lowed by an indented block of statements.

Take a closer look at the header for each of the method definitions (lines 11, 19, and 28)
and notice that each method has a parameter variable named self:

Line 11: def __init__(self):
Line 19: def toss(self):
Line 28: def get_sideup(self):

The self parameter1 is required in every method of a class. Recall from our earlier discus-
sion on object-oriented programming that a method operates on a specific object’s data at-
tributes. When a method executes, it must have a way of knowing which object’s data at-
tributes it is supposed to operate on. That’s where the self parameter comes in. When a
method is called, Python makes the self parameter reference the specific object that the
method is supposed to operate on.

Let’s look at each of the methods. The first method, which is named __init__, is defined
in lines 11 through 12:

def __init__(self):
self.sideup = 'Heads'

Most Python classes have a special method named __init__, which is automatically exe-
cuted when an instance of the class is created in memory. The __init__ method is com-
monly known as an initializer method because it initializes the object’s data attributes. (The
name of the method starts with two underscore characters, followed by the word init, fol-
lowed by two more underscore characters.)

Immediately after an object is created in memory, the __init__ method executes, and the
self parameter is automatically assigned the object that was just created. Inside the
method, the statement in line 12 executes:

self.sideup = 'Heads'

This statement assigns the string 'Heads' to the sideup data attribute belonging to the ob-
ject that was just created. As a result of this __init__ method, each object that we create
from the Coin class will initially have a sideup attribute that is set to 'Heads'.

1 The parameter must be present in a method. You are not required to name it self, but this is strongly recom-
mended to conform with standard practice.

NOTE: The __init__ method is usually the first method inside a class definition.

11.2 Classes 429

The toss method appears in lines 19 through 23:

def toss(self):
if random.randint(0, 1) == 0:

self.sideup = 'Heads'
else:

self.sideup = 'Tails'

This method also has the required self parameter variable. When the toss method is
called, self will automatically reference the object that the method is to operate on.

The toss method simulates the tossing of the coin. When the method is called, the if state-
ment in line 20 calls the random.randint function to get a random integer in the range of
0 through 1. If the number is 0, then the statement in line 21 assigns 'Heads' to
self.sideup. Otherwise, the statement in line 23 assigns 'Tails' to self.sideup.

The get_sideup method appears in lines 28 through 29:

def get_sideup(self):
return self.sideup

Once again, the method has the required self parameter variable. This method simply re-
turns the value of self.sideup. We call this method any time we want to know which side
of the coin is facing up.

To demonstrate the Coin class, we need to write a complete program that uses it to create
an object. Program 11-2 shows an example. The Coin class definition appears in lines 6
through 29. The program has a main function, which appears in lines 32 through 44.

Program 11-2 (coin_demo1.py)

1 import random
2
3 # The Coin class simulates a coin that can
4 # be flipped.
5
6 class Coin:
7
8 # The __init__ method initializes the
9 # sideup data attribute with 'Heads'.

10
11 def __init__(self):
12 self.sideup = 'Heads'
13
14 # The toss method generates a random number
15 # in the range of 0 through 1. If the number
16 # is 0, then sideup is set to 'Heads'.
17 # Otherwise, sideup is set to 'Tails'.
18
19 def toss(self):
20 if random.randint(0, 1) == 0:

(program continues)

430 Chapter 11 Classes and Object-Oriented Programming

Program 11-2 (continued)

21 self.sideup = 'Heads'
22 else:
23 self.sideup = 'Tails'
24
25 # The get_sideup method returns the value
26 # referenced by sideup.
27
28 def get_sideup(self):
29 return self.sideup
30
31 # The main function.
32 def main():
33 # Create an object from the Coin class.
34 my_coin = Coin()
35
36 # Display the side of the coin that is facing up.
37 print('This side is up:', my_coin.get_sideup())
38
39 # Toss the coin.
40 print('I am tossing the coin...')
41 my_coin.toss()
42
43 # Display the side of the coin that is facing up.
44 print('This side is up:', my_coin.get_sideup())
45
46 # Call the main function.
47 main()

Program Output

This side is up: Heads
I am tossing the coin...
This side is up: Tails

Program Output

This side is up: Heads
I am tossing the coin...
This side is up: Heads

Program Output

This side is up: Heads
I am tossing the coin...
This side is up: Tails

Take a closer look at the statement in line 34:

my_coin = Coin()

11.2 Classes 431

The expression Coin() that appears on the right side of the = operator causes two things
to happen:

1. An object is created in memory from the Coin class.
2. The Coin class’s __init__ method is executed, and the self parameter is automati-

cally set to the object that was just created. As a result, that object’s sideup attribute
is assigned the string 'Heads'.

Figure 11-6 illustrates these steps.

Figure 11-6 Actions caused by the Coin() expression

A Coin object

1
An object is created in memory
from the Coin class.

2

The Coin class's __init__
method is called, and the self
parameter is set to the newly
created object

def __init__(self):
 self.sideup = 'Heads'

A Coin object

sideup 'Heads'
After these steps take place,
a Coin object will exist with its
sideup attribute set to 'Heads'.

After this, the = operator assigns the Coin object that was just created to the my_coin vari-
able. Figure 11-7 shows that after the statement in line 12 executes, the my_coin variable
will reference a Coin object, and that object’s sideup attribute will be assigned the string
'Heads'.

Figure 11-7 The my_coin variable references a Coin object

A Coin object

my_coin 'Heads'sideup

The next statement to execute is line 37:

print('This side is up:', my_coin.get_sideup())

This statement prints a message indicating the side of the coin that is facing up. Notice that
the following expression appears in the statement:

my_coin.get_sideup()

This expression uses the object referenced by my_coin to call the get_sideup method.
When the method executes, the self parameter will reference the my_coin object. As a re-
sult, the method returns the string 'Heads'.

432 Chapter 11 Classes and Object-Oriented Programming

Notice that we did not have to pass an argument to the sideup method, despite the fact
that it has the self parameter variable. When a method is called, Python automatically
passes a reference to the calling object into the method’s first parameter. As a result, the
self parameter will automatically reference the object that the method is to operate on.

Lines 40 and 41 are the next statements to execute:

print('I am tossing the coin...')
my_coin.toss()

The statement in line 41 uses the object referenced by my_coin to call the toss method.
When the method executes, the self parameter will reference the my_coin object. The
method will randomly generate a number and use that number to change the value of the
object’s sideup attribute.

Line 44 executes next. This statement calls my_coin.get_sideup() to display the side of the
coin that is facing up.

Hiding Attributes
Earlier in this chapter we mentioned that an object’s data attributes should be private, so
that only the object’s methods can directly access them. This protects the object’s data at-
tributes from accidental corruption. However, in the Coin class that was shown in the pre-
vious example, the sideup attribute is not private. It can be directly accessed by statements
that are not in a Coin class method. Program 11-3 shows an example. Note that lines 1
through 30 are not shown to conserve space. Those lines contain the Coin class, and they
are the same as lines 1 through 30 in Program 11-2.

Program 11-3 (coin_demo2.py)

Lines 1 through 30 are omitted. These lines are the same as lines 1 through 30 in Program 11-2.

31 # The main function.
32 def main():
33 # Create an object from the Coin class.
34 my_coin = Coin()
35
36 # Display the side of the coin that is facing up.
37 print('This side is up:', my_coin.get_sideup())
38
39 # Toss the coin.
40 print('I am tossing the coin...')
41 my_coin.toss()
42
43 # But now I'm going to cheat! I'm going to
44 # directly change the value of the object's
45 # sideup attribute to 'Heads'.
46 my_coin.sideup = 'Heads'
47
48 # Display the side of the coin that is facing up.

11.2 Classes 433

49 print('This side is up:', my_coin.get_sideup())
50
51 # Call the main function.
52 main()

Program Output

This side is up: Heads
I am tossing the coin...
This side is up: Heads

Program Output

This side is up: Heads
I am tossing the coin...
This side is up: Heads

Program Output

This side is up: Heads
I am tossing the coin...
This side is up: Heads

Line 34 creates a Coin object in memory and assigns it to the my_coin variable. The state-
ment in line 37 displays the side of the coin that is facing up, and then line 41 calls the object’s
toss method. Then the statement in line 46 directly assigns the string 'Heads' to the object’s
sideup attribute:

my_coin.sideup = 'Heads'

Regardless of the outcome of the toss method, this statement will change the my_coin
object’s sideup attribute to 'Heads'. As you can see from the three sample runs of the
program, the coin always lands heads up!

If we truly want to simulate a coin that is being tossed, then we don’t want code outside
the class to be able to change the result of the toss method. To prevent this from happen-
ing, we need to make the sideup attribute private. In Python you can hide an attribute by
starting its name with two underscore characters. If we change the name of the sideup at-
tribute to __sideup, then code outside the Coin class will not be able to access it. Program
11-4 shows a new version of the Coin class, with this change made.

Program 11-4 (coin_demo3.py)

1 import random
2
3 # The Coin class simulates a coin that can
4 # be flipped.
5
6 class Coin:
7
8 # The __init__ method initializes the

(program continues)

434 Chapter 11 Classes and Object-Oriented Programming

Program 11-4 (continued)

9 # __sideup data attribute with 'Heads'.
10
11 def __init__(self):
12 self.__sideup = 'Heads'
13
14 # The toss method generates a random number
15 # in the range of 0 through 1. If the number
16 # is 0, then sideup is set to 'Heads'.
17 # Otherwise, sideup is set to 'Tails'.
18
19 def toss(self):
20 if random.randint(0, 1) == 0:
21 self.__sideup = 'Heads'
22 else:
23 self.__sideup = 'Tails'
24
25 # The get_sideup method returns the value
26 # referenced by sideup.
27
28 def get_sideup(self):
29 return self.__sideup
30
31 # The main function.
32 def main():
33 # Create an object from the Coin class.
34 my_coin = Coin()
35
36 # Display the side of the coin that is facing up.
37 print('This side is up:', my_coin.get_sideup())
38
39 # Toss the coin.
40 print('I am going to toss the coin ten times:')
41 for count in range(10):
42 my_coin.toss()
43 print(my_coin.get_sideup())
44
45 # Call the main function.
46 main()

Program Output

This side is up: Heads
I am going to toss the coin ten times:
Tails
Heads
Heads

11.2 Classes 435

Tails
Tails
Tails
Tails
Tails
Heads
Heads

Storing Classes in Modules
The programs you have seen so far in this chapter have the Coin class definition in the same
file as the programming statements that use the Coin class. This approach works fine with
small programs that use only one or two classes. As programs use more classes, however,
the need to organize those classes becomes greater.

Programmers commonly organize their class definitions by storing them in modules. Then the
modules can be imported into any programs that need to use the classes they contain. For ex-
ample, suppose we decide to store the Coin class in a module named coin. Program 11-5
shows the contents of the coin.py file. Then, when we need to use the Coin class in a program,
we can import the coin module. This is demonstrated in Program 11-6.

Program 11-5 (coin.py)

1 import random
2
3 # The Coin class simulates a coin that can
4 # be flipped.
5
6 class Coin:
7
8 # The __init__ method initializes the
9 # __sideup data attribute with 'Heads'.

10
11 def __init__(self):
12 self.__sideup = 'Heads'
13
14 # The toss method generates a random number
15 # in the range of 0 through 1. If the number
16 # is 0, then sideup is set to 'Heads'.
17 # Otherwise, sideup is set to 'Tails'.
18
19 def toss(self):
20 if random.randint(0, 1) == 0:
21 self.__sideup = 'Heads'
22 else:
23 self.__sideup = 'Tails'

(program continues)

436 Chapter 11 Classes and Object-Oriented Programming

Program 11-5 (continued)

24
25 # The get_sideup method returns the value
26 # referenced by sideup.
27
28 def get_sideup(self):
29 return self.__sideup

Program 11-6 (coin_demo4.py)

1 # This program imports the coin module and
2 # creates an instance of the Coin class.
3
4 import coin
5
6 def main():
7 # Create an object from the Coin class.
8 my_coin = coin.Coin()
9

10 # Display the side of the coin that is facing up.
11 print('This side is up:', my_coin.get_sideup())
12
13 # Toss the coin.
14 print('I am going to toss the coin ten times:')
15 for count in range(10):
16 my_coin.toss()
17 print(my_coin.get_sideup())
18
19 # Call the main function.
20 main()

Program Output

This side is up: Heads
I am going to toss the coin ten times:
Tails
Tails
Heads
Tails
Heads
Heads
Tails
Heads
Tails
Tails

11.2 Classes 437

Line 4 imports the coin module. Notice that in line 8 we had to qualify the name of the
Coin class by prefixing it with the name of the module, followed by a dot:

my_coin = coin.Coin()

The BankAccount Class
Let’s look at another example. Program 11-7 shows a BankAccount class, stored in a mod-
ule named bankaccount. Objects that are created from this class will simulate bank ac-
counts, allowing us to have a starting balance, make deposits, make withdrawals, and get
the current balance.

Program 11-7 (bankaccount.py)

1 # The BankAccount class simulates a bank account.
2
3 class BankAccount:
4
5 # The __init__ method accepts an argument for
6 # the account's balance. It is assigned to
7 # the __balance attribute.
8
9 def __init__(self, bal):

10 self.__balance = bal
11
12 # The deposit method makes a deposit into the
13 # account.
14
15 def deposit(self, amount):
16 self.__balance += amount
17
18 # The withdraw method withdraws an amount
19 # from the account.
20
21 def withdraw(self, amount):
22 if self.__balance >= amount:
23 self.__balance -= amount
24 else:
25 print('Error: Insufficient funds')
26
27 # The get_balance method returns the
28 # account balance.
29
30 def get_balance(self):
31 return self.__balance

Notice that the __init__ method has two parameter variables: self and bal. The bal
parameter will accept the account’s starting balance as an argument. In line 10 the bal
parameter amount is assigned to the object’s __balance attribute.

438 Chapter 11 Classes and Object-Oriented Programming

The deposit method is in lines 15 through 16. This method has two parameter variables:
self and amount. When the method is called, the amount that is to be deposited into the
account is passed into the amount parameter. The value of the parameter is then added to
the __balance attribute in line 16.

The withdraw method is in lines 21 through 25. This method has two parameter variables:
self and amount. When the method is called, the amount that is to be withdrawn from the
account is passed into the amount parameter. The if statement that begins in line 22 deter-
mines whether there is enough in the account balance to make the withdrawal. If so,
amount is subtracted from __balance in line 23. Otherwise line 25 displays the message
'Error: Insufficient funds'.

The get_balance method is in lines 30 through 31. This method returns the value of the
__balance attribute.

Program 11-8 demonstrates how to use the class.

Program 11-8 (account_test.py)

1 # This program demonstrates the BankAccount class.
2
3 import bankaccount
4
5 def main():
6 # Get the starting balance.
7 start_bal = float(input('Enter your starting balance: '))
8
9 # Create a BankAccount object.

10 savings = bankaccount.BankAccount(start_bal)
11
12 # Deposit the user's paycheck.
13 pay = float(input('How much were you paid this week? '))
14 print('I will deposit that into your account.')
15 savings.deposit(pay)
16
17 # Display the balance.
18 print('Your account balance is $', \
19 format(savings.get_balance(), ',.2f'),
20 sep='')
21
22 # Get the amount to withdraw.
23 cash = float(input('How much would you like to withdraw? '))
24 print('I will withdraw that from your account.')
25 savings.withdraw(cash)
26
27 # Display the balance.
28 print('Your account balance is $', \
29 format(savings.get_balance(), ',.2f'),
30 sep='')

11.2 Classes 439

31
32 # Call the main function.
33 main()

Program Output (with input shown in bold)

Enter your starting balance: 1000.00 e
How much were you paid this week? 500.00 e
I will deposit that into your account.
Your account balance is $1,500.00
How much would you like to withdraw? 1200.00 e
I will withdraw that from your account.
Your account balance is $300.00

Program Output (with input shown in bold)

Enter your starting balance: 1000.00 e
How much were you paid this week? 500.00 e
I will deposit that into your account.
Your account balance is $1,500.00
How much would you like to withdraw? 2000.00 e
I will withdraw that from your account.
Error: Insufficient funds
Your account balance is $1,500.00

Line 7 gets the starting account balance from the user and assigns it to the start_bal
variable. Line 10 creates an instance of the BankAccount class and assigns it to the savings
variable. Take a closer look at the statement:

savings = bankaccount.BankAccount(start_bal)

Notice that the start_bal variable is listed inside the parentheses. This causes the start_bal
variable to be passed as an argument to the __init__ method. In the __init__ method, it will
be passed into the bal parameter.

Line 13 gets the amount of the user’s pay and assigns it to the pay variable. In line 15
the savings.deposit method is called, passing the pay variable as an argument. In the
deposit method, it will be passed into the amount parameter.

The statement in lines 18 through 20 displays the account balance. It displays the value
returned from the savings.get_balance method.

Line 23 gets the amount that the user wants to withdraw and assigns it to the cash vari-
able. In line 25 the savings.withdraw method is called, passing the cash variable as an
argument. In the withdraw method, it will be passed into the amount parameter. The state-
ment in lines 28 through 30 displays the ending account balance.

The __str__ method
Quite often we need to display a message that indicates an object’s state. An object’s state
is simply the values of the object’s attributes at any given moment. For example, recall that
the BankAccount class has one data attribute: __balance. At any given moment, a
BankAccount object’s __balance attribute will reference some value. The value of the

440 Chapter 11 Classes and Object-Oriented Programming

__balance attribute represents the object’s state at that moment. The following might be
an example of code that displays a BankAccount object’s state:

account = bankaccount.BankAccount(1500.0)
print('The balance is $', format(savings.get_balance(), ',.2f'), sep='')

The first statement creates a BankAccount object, passing the value 1500.0 to the __init__
method. After this statement executes, the account variable will reference the BankAccount
object. The second line displays a string showing the value of the object’s __balance attrib-
ute. The output of this statement will look like this:

The balance is $1,500.00

Displaying an object’s state is a common task. It is so common that many programmers equip
their classes with a method that returns a string containing the object’s state. In Python, you
give this method the special name __str__. Program 11-9 shows the BankAccount class
with a __str__ method added to it. The __str__ method appears in lines 36 through 37.
It returns a string indicating the account balance.

Program 11-9 (bankaccount2.py)

1 # The BankAccount class simulates a bank account.
2
3 class BankAccount:
4
5 # The __init__ method accepts an argument for
6 # the account's balance. It is assigned to
7 # the __balance attribute.
8
9 def __init__(self, bal):
10 self.__balance = bal
11
12 # The deposit method makes a deposit into the
13 # account.
14
15 def deposit(self, amount):
16 self.__balance += amount
17
18 # The withdraw method withdraws an amount
19 # from the account.
20
21 def withdraw(self, amount):
22 if self.__balance >= amount:
23 self.__balance -= amount
24 else:
25 print('Error: Insufficient funds')
26
27 # The get_balance method returns the
28 # account balance.
29
30 def get_balance(self):

11.2 Classes 441

31 return self.__balance
32
33 # The __str__ method returns a string
34 # indicating the object's state.
35
36 def __str__(self):
37 return 'The balance is $' + format(self.__balance, ',.2f')

You do not directly call the __str__ method. Instead, it is automatically called when you
pass an object’s as an argument to the print function. Program 11-10 shows an example.

Program 11-10 (account_test2.py)

1 # This program demonstrates the BankAccount class
2 # with the __str__ method added to it.
3
4 import bankaccount2
5
6 def main():
7 # Get the starting balance.
8 start_bal = float(input('Enter your starting balance: '))
9
10 # Create a BankAccount object.
11 savings = bankaccount2.BankAccount(start_bal)
12
13 # Deposit the user's paycheck.
14 pay = float(input('How much were you paid this week? '))
15 print('I will deposit that into your account.')
16 savings.deposit(pay)
17
18 # Display the balance.
19 print(savings)
20
21 # Get the amount to withdraw.
22 cash = float(input('How much would you like to withdraw? '))
23 print('I will withdraw that from your account.')
24 savings.withdraw(cash)
25
26 # Display the balance.
27 print(savings)
28
29 # Call the main function.
30 main()

Program Output (with input shown in bold)

Enter your starting balance: 1000.00 e
How much were you paid this week? 500.00 e
I will deposit that into your account.

(program output continues)

442 Chapter 11 Classes and Object-Oriented Programming

Program Output (continued)

The account balance is $1,500.00
How much would you like to withdraw? 1200.00 e
I will withdraw that from your account.
The account balance is $300.00

The name of the object, savings, is passed to the print function in lines 19 and 27. This
causes the BankAccount class’s __str__ method to be called. The string that is returned
from the __str__ method is then displayed.

The __str__ method is also called automatically when an object is passed as an argument
to the built-in str function. Here is an example:

account = bankaccount2.BankAccount(1500.0)
message = str(account)
print(message)

In the second statement, the account object is passed as an argument to the str function. This
causes the BankAccount class’s __str__ method to be called. The string that is returned is as-
signed to the message variable and then displayed by the print function in the third line.

Checkpoint

11.5 You hear someone make the following comment: “A blueprint is a design for a
house. A carpenter can use the blueprint to build the house. If the carpenter
wishes, he or she can build several identical houses from the same blueprint.”
Think of this as a metaphor for classes and objects. Does the blueprint represent a
class, or does it represent an object?

11.6 In this chapter, we use the metaphor of a cookie cutter and cookies that are made
from the cookie cutter to describe classes and objects. In this metaphor, are objects
the cookie cutter, or the cookies?

11.7 What is the purpose of the __init__ method? When does it execute?

11.8 What is the purpose of the self parameter in a method?

11.9 In a Python class, how do you hide an attribute from code outside the class?

11.10 What is the purpose of the __str__ method?

11.11 How do you call the __str__ method?

11.3 Working with Instances

CONCEPT: Each instance of a class has its own set of data attributes.

When a method uses the self parameter to create an attribute, the attribute belongs to the
specific object that self references. We call these attributes instance attributes, because
they belong to a specific instance of the class.

It is possible to create many instances of the same class in a program. Each instance will
then have its own set of attributes. For example, look at Program 11-11. This program cre-
ates three instances of the Coin class. Each instance has its own __sideup attribute.

11.3 Working with Instances 443

Program 11-11 (coin_demo5.py)

1 # This program imports the simulation module and
2 # creates three instances of the Coin class.
3
4 import coin
5
6 def main():
7 # Create three objects from the Coin class.
8 coin1 = coin.Coin()
9 coin2 = coin.Coin()
10 coin3 = coin.Coin()
11
12 # Display the side of each coin that is facing up.
13 print('I have three coins with these sides up:')
14 print(coin1.get_sideup())
15 print(coin2.get_sideup())
16 print(coin3.get_sideup())
17 print()
18
19 # Toss the coin.
20 print('I am tossing all three coins...')
21 print()
22 coin1.toss()
23 coin2.toss()
24 coin3.toss()
25
26 # Display the side of each coin that is facing up.
27 print('Now here are the sides that are up:')
28 print(coin1.get_sideup())
29 print(coin2.get_sideup())
30 print(coin3.get_sideup())
31 print()
32
33 # Call the main function.
34 main()

Program Output

I have three coins with these sides up:
Heads
Heads
Heads

I am tossing all three coins...

Now here are the sides that are up:
Tails
Tails
Heads

444 Chapter 11 Classes and Object-Oriented Programming

In lines 8 through 10, the following statements create three objects, each an instance of the
Coin class:

coin1 = coin.Coin()
coin2 = coin.Coin()
coin3 = coin.Coin()

Figure 11-8 illustrates how the coin1, coin2, and coin3 variables reference the three
objects after these statements execute. Notice that each object has its own __sideup attri-
bute. Lines 14 through 16 display the values returned from each object’s get_sideup
method.

A Coin object

coin1 __sideup 'Heads'

A Coin object

coin2 __sideup 'Heads'

A Coin object

coin3 __sideup 'Heads'

Figure 11-8 The coin1, coin2, and coin3 variables reference three Coin objects

A Coin object

coin1 __sideup 'Tails'

A Coin object

coin2 __sideup 'Tails'

A Coin object

coin3 __sideup 'Heads'

Figure 11-9 The objects after the toss method

Then, the statements in lines 22 through 24 call each object’s toss method:

coin1.toss()
coin2.toss()
coin3.toss()

Figure 11-9 shows how these statements changed each object’s __sideup attribute in the
program’s sample run.

In the Spotlight:
Creating the CellPhone Class
Wireless Solutions, Inc. is a business that sells cell phones and wireless service. You are a pro-
grammer in the company’s IT department, and your team is designing a program to manage
all of the cell phones that are in inventory. You have been asked to design a class that repre-
sents a cell phone. The data that should be kept as attributes in the class are as follows:

• The name of the phone’s manufacturer will be assigned to the __manufact attribute.
• The phone’s model number will be assigned to the __model attribute.
• The phone’s retail price will be assigned to the __retail_price attribute.

The class will also have the following methods:

• An __init__ method that accepts arguments for the manufacturer, model number,
and retail price.

• A set_manufact method that accepts an argument for the manufacturer. This
method will allow us to change the value of the __manufact attribute after the ob-
ject has been created, if necessary.

• A set_model method that accepts an argument for the model. This method will allow
us to change the value of the __model attribute after the object has been created, if
necessary.

• A set_retail_price method that accepts an argument for the retail price. This
method will allow us to change the value of the __retail_price attribute after the
object has been created, if necessary.

• A get_manufact method that returns the phone’s manufacturer.
• A get_model method that returns the phone’s model number.
• A get_retail_price method that returns the phone’s retail price.

Program 11-12 shows the class definition. The class is stored in a module named cellphone.

Program 11-12 (cellphone.py)

1 # The CellPhone class holds data about a cell phone.
2
3 class CellPhone:
4
5 # The __init__ method initializes the attributes.
6
7 def __init__(self, manufact, model, price):
8 self.__manufact = manufact
9 self.__model = model
10 self.__retail_price = price
11
12 # The set_manufact method accepts an argument for
13 # the phone's manufacturer.
14
15 def set_manufact(self, manufact):
16 self.__manufact = manufact

11.3 Working with Instances 445

(program continues)

Program 11-12 (continued)

17
18 # The set_model method accepts an argument for
19 # the phone's model number.
20
21 def set_model(self, model):
22 self.__model = model
23
24 # The set_retail_price method accepts an argument
25 # for the phone's retail price.
26
27 def set_retail_price(self, price):
28 self.__retail_price = price
29
30 # The get_manufact method returns the
31 # phone's manufacturer.
32
33 def get_manufact(self):
34 return self.__manufact
35
36 # The get_model method returns the
37 # phone's model number.
38
39 def get_model(self):
40 return self.__model
41
42 # The get_retail_price method returns the
43 # phone's retail price.
44
45 def get_retail_price(self):
46 return self.__retail_price

The CellPhone class will be imported into several programs that your team is developing.
To test the class, you write the code in Program 11-13. This is a simple program that
prompts the user for the phone’s manufacturer, model number, and retail price. An instance
of the CellPhone class is created and the data is assigned to its attributes.

Program 11-13 (cell_phone_test.py)

1 # This program tests the CellPhone class.
2
3 import cellphone
4
5 def main():
6 # Get the phone data.
7 man = input('Enter the manufacturer: ')

446 Chapter 11 Classes and Object-Oriented Programming

11.3 Working with Instances 447

8 mod = input('Enter the model number: ')
9 retail = float(input('Enter the retail price: '))
10
11 # Create an instance of the CellPhone class.
12 phone = cellphone.CellPhone(man, mod, retail)
13
14 # Display the data that was entered.
15 print('Here is the data that you entered:')
16 print('Manufacturer:', phone.get_manufact())
17 print('Model Number:', phone.get_model())
18 print('Retail Price: $', format(phone.get_retail_price(), ',.2f'), sep='')
19
20 # Call the main function.
21 main()

Program Output (with input shown in bold)

Enter the manufacturer: Acme Electronics e
Enter the model number: M1000 e
Enter the retail price: 199.99 e
Here is the data that you entered:
Manufacturer: Acme Electronics
Model Number: M1000
Retail Price: $199.99

Accessor and Mutator Methods
As mentioned earlier, it is a common practice to make all of a class’s data attributes private
and to provide public methods for accessing and changing those attributes. This ensures
that the object owning those attributes is in control of all the changes being made to them.

A method that returns a value from a class’s attribute but does not change it is known as
an accessor method. Accessor methods provide a safe way for code outside the class to re-
trieve the values of attributes, without exposing the attributes in a way that they could be
changed by the code outside the method. In the CellPhone class that you saw in Program
11-12 (in the previous In the Spotlight section), the get_manufact, get_model, and
get_retail_price methods are accessor methods.

A method that stores a value in a data attribute or changes the value of a data attribute in some
other way is known as a mutator method. Mutator methods can control the way that a class’s
data attributes are modified. When code outside the class needs to change the value of an ob-
ject’s data attribute, it typically calls a mutator and passes the new value as an argument. If nec-
essary, the mutator can validate the value before it assigns it to the data attribute. In Program
11-12, the set_manufact, set_model, and set_retail_pricemethods are mutator methods.

NOTE: Mutator methods are sometimes called “setters” and accessor methods are
sometimes called “getters.”

In the Spotlight:
Storing Objects in a List
The CellPhone class that you created in the previous In the Spotlight section will be used
in a variety of programs. Many of these programs will store CellPhone objects in lists. To
test the ability to store CellPhone objects in a list, you write the code in Program 11-14. This
program gets the data for five phones from the user, creates five CellPhone objects hold-
ing that data, and stores those objects in a list. It then iterates over the list displaying the
attributes of each object.

Program 11-14 (cell_phone_list.py)

1 # This program creates five CellPhone objects and
2 # stores them in a list.
3
4 import cellphone
5
6 def main():
7 # Get a list of CellPhone objects.
8 phones = make_list()
9
10 # Display the data in the list.
11 print('Here is the data you entered:')
12 display_list(phones)
13
14 # The make_list function gets data from the user
15 # for five phones. The function returns a list
16 # of CellPhone objects containing the data.
17
18 def make_list():
19 # Create an empty list.
20 phone_list = []
21
22 # Add five CellPhone objects to the list.
23 print('Enter data for five phones.')
24 for count in range(1, 6):
25 # Get the phone data.
26 print('Phone number ' + str(count) + ':')
27 man = input('Enter the manufacturer: ')
28 mod = input('Enter the model number: ')
29 retail = float(input('Enter the retail price: '))
30 print()
31
32 # Create a new CellPhone object in memory and
33 # assign it to the phone variable.
34 phone = cellPhone.CellPhone(man, mod, retail)
35
36 # Add the object to the list.

448 Chapter 11 Classes and Object-Oriented Programming

37 phone_list.append(phone)
38
39 # Return the list.
40 return phone_list
41
42 # The display_list function accepts a list containing
43 # CellPhone objects as an argument and displays the
44 # data stored in each object.
45
46 def display_list(phone_list):
47 for item in phone_list:
48 print(item.get_manufact())
49 print(item.get_model())
50 print(item.get_retail_price())
51 print()
52
53 # Call the main function.
54 main()

Program Output (with input shown in bold)

Enter data for five phones.

Phone number 1:
Enter the manufacturer: Acme Electronics e
Enter the model number: M1000 e
Enter the retail price: 199.99 e

Phone number 2:
Enter the manufacturer: Atlantic Communications e
Enter the model number: S2 e
Enter the retail price: 149.99 e

Phone number 3:
Enter the manufacturer: Wavelength Electronics e
Enter the model number: N477 e
Enter the retail price: 249.99 e

Phone number 4:
Enter the manufacturer: Edison Wireless e
Enter the model number: SLX88 e
Enter the retail price: 169.99 e

Phone number 5:
Enter the manufacturer: Sonic Systems e
Enter the model number: X99 e
Enter the retail price: 299.99 e

Here is the data you entered:
Acme Electronics
M1000
199.99

11.3 Working with Instances 449

(program output continues)

Passing Objects as Arguments
When you are developing applications that work with objects, you often need to write func-
tions and methods that accept objects as arguments. For example, the following code shows
a function named show_coin_status that accepts a Coin object as an argument:

def show_coin_status(coin_obj):
print('This side of the coin is up:', coin_obj.get_sideup())

The following code sample shows how we might create a Coin object and then pass it as
an argument to the show_coin_status function:

my_coin = coin.Coin()
show_coin_status(my_coin)

When you pass a object as an argument, the thing that is passed into the parameter variable
is a reference to the object. As a result, the function or method that receives the object as an
argument has access to the actual object. For example, look at the following flip method:

def flip(coin_obj):
coin_obj.toss()

This method accepts a Coin object as an argument, and it calls the object's toss method.
Program 11-15 demonstrates the method.

Program Output (continued)

Atlantic Communications
S2
149.99

Wavelength Electronics
N477
249.99

Edison Wireless
SLX88
169.99

Sonic Systems
X99
299.99

450 Chapter 11 Classes and Object-Oriented Programming

The make_list function appears in lines 18 through 40. In line 20 an empty list named
phone_list is created. The for loop, which begins in line 24, iterates five times. Each time
the loop iterates, it gets the data for a cell phone from the user (lines 27 through 29), it cre-
ates an instance of the CellPhone class that is initialized with the data (line 34), and it ap-
pends the object to the phone_list list (line 37). Line 40 returns the list.

The display_list function in lines 46 through 51 accepts a list of CellPhone objects as
an argument. The for loop that begins in line 47 iterates over the objects in the list and dis-
plays the values of each object’s attributes.

11.3 Working with Instances 451

Program 11-15 (coin_argument.py)

1 # This program passes a Coin object as
2 # an argument to a function.
3 import coin

4
5 # main function
6 def main():
7 # Create a Coin object.
8 my_coin = coin.Coin()
9

10 # This will display 'Heads'.
11 print(my_coin.get_sideup())
12
13 # Pass the object to the flip function.
14 flip(my_coin)
15
16 # This might display 'Heads', or it might
17 # display 'Tails'.
18 print(my_coin.get_sideup())
19
20 # The flip function flips a coin.
21 def flip(coin_obj):
22 coin_obj.toss()
23
24 # Call the main function.
25 main()

Program Output

Heads
Tails

Program Output

Heads
Heads

Program Output

Heads
Tails

The statement in line 8 creates a Coin object, referenced by the variable my_coin. Line 11
displays the value of the my_coin object’s __sideup attribute. Because the object’s
__init__ method set the __sideup attribute to 'Heads', we know that line 11 will dis-
play the string 'Heads'. Line 14 calls the flip function, passing the my_coin object as an
argument. Inside the flip function, the my_coin object’s toss method is called. Then, line
18 displays the value of the my_coin object’s __sideup attribute again. This time, we can-
not predict whether 'Heads' or 'Tails' will be displayed, because the my_coin object’s
toss method has been called.

In the Spotlight:
Pickling Your Own Objects
Recall from Chapter 10 that the pickle module provides functions for serializing objects.
Serializing an object means converting it to a stream of bytes that can be saved to a file for
later retrieval. The pickle module’s dump function serializes (pickles) an object and writes it
to a file, and the load function retrieves an object from a file and deserializes (unpickles) it.

In Chapter 10 you saw examples in which dictionary objects were pickled and unpickled.
You can also pickle and unpickle objects of your own classes. Program 11-16 shows an
example that pickles three CellPhone objects and saves them to a file. Program 11-17
retrieves those objects from the file and unpickles them.

Program 11-16 (pickle_cellphone.py)

1 # This program pickles CellPhone objects.
2 import pickle
3 import cellphone
4
5 # Constant for the filename.
6 FILENAME = 'cellphones.dat'
7
8 def main():
9 # Initialize a variable to control the loop.

10 again = 'y'
11
12 # Open a file.
13 output_file = open(FILENAME, 'wb')
14
15 # Get data from the user.
16 while again.lower() == 'y':
17 # Get cell phone data.
18 man = input('Enter the manufacturer: ')
19 mod = input('Enter the model number: ')
20 retail = float(input('Enter the retail price: '))
21
22 # Create a CellPhone object.
23 phone = cellphone.CellPhone(man, mod, retail)
24
25 # Pickle the object and write it to the file.
26 pickle.dump(phone, output_file)
27
28 # Get more cell phone data?
29 again = input('Enter more phone data? (y/n): ')
30
31 # Close the file.
32 output_file.close()
33 print('The data was written to', FILENAME)

452 Chapter 11 Classes and Object-Oriented Programming

11.3 Working with Instances 453

(program continues)

34
35 # Call the main function.
36 main()

Program Output (with input shown in bold)

Enter the manufacturer: ACME Electronics e

Enter the model number: M1000 e

Enter the retail price: 199.99 e

Enter more phone data? (y/n): y e

Enter the manufacturer: Sonic Systems e

Enter the model number: X99 e

Enter the retail price: 299.99 e

Enter more phone data? (y/n): n e

The data was written to cellphones.dat

Program 11-17 (unpickle_cellphone.py)

1 # This program unpickles CellPhone objects.
2 import pickle
3 import cellphone
4
5 # Constant for the filename.
6 FILENAME = 'cellphones.dat'
7
8 def main():
9 end_of_file = False # To indicate end of file

10
11 # Open the file.
12 input_file = open(FILENAME, 'rb')
13
14 # Read to the end of the file.
15 while not end_of_file:
16 try:
17 # Unpickle the next object.
18 phone = pickle.load(input_file)
19
20 # Display the cell phone data.
21 display_data(phone)
22 except EOFError:
23 # Set the flag to indicate the end
24 # of the file has been reached.
25 end_of_file = True
26
27 # Close the file.
28 input_file.close()
29

454 Chapter 11 Classes and Object-Oriented Programming

Program 11-17 (continued)

30 # The display_data function displays the data
31 # from the CellPhone object passed as an argument.
32 def display_data(phone):
33 print('Manufacturer:', phone.get_manufact())
34 print('Model Number:', phone.get_model())
35 print('Retail Price: $', \
36 format(phone.get_retail_price(), ',.2f'), \
37 sep='')
38 print()
39
40 # Call the main function.
41 main()

Program Output

Manufacturer: ACME Electronics
Model Number: M1000
Retail Price: $199.99

Manufacturer: Sonic Systems
Model Number: X99
Retail Price: $299.99

In the Spotlight:
Storing Objects in a Dictionary
Recall from Chapter 10 that dictionaries are objects that store elements as key-value pairs.
Each element in a dictionary has a key and a value. If you want to retrieve a specific value
from the dictionary, you do so by specifying its key. In Chapter 10 you saw examples that
stored values such as strings, integers, floating-point numbers, lists, and tuples in dictio-
naries. Dictionaries are also useful for storing objects that you create from your own classes.

Let’s look at an example. Suppose you want to create a program that keeps contact infor-
mation, such as names, phone numbers, and email addresses. You could start by writing a
class such as the Contact class, shown in Program 11-18. An instance of the Contact class
keeps the following data:

• A person’s name is stored in the __name attribute.
• A person’s phone number is stored in the __phone attribute.
• A person’s email address is stored in the __email attribute.

The class has the following methods:

• An __init__ method that accepts arguments for a person’s name, phone number,
and email address

• A set_name method that sets the __name attribute

• A set_phone method that sets the __phone attribute
• A set_email method that sets the __email attribute
• A get_name method that returns the __name attribute
• A get_phone method that returns the __phone attribute
• A get_email method that returns the __email attribute
• A __str__ method that returns the object’s state as a string

Program 11-18 (contact.py)

1 # The Contact class holds contact information.
2
3 class Contact:
4 # The __init__ method initializes the attributes.
5 def __init__(self, name, phone, email):
6 self.__name = name
7 self.__phone = phone
8 self.__email = email
9

10 # The set_name method sets the name attribute.
11 def set_name(self, name):
12 self.__name = name
13
14 # The set_phone method sets the phone attribute.
15 def set_phone(self, phone):
16 self.__phone = phone
17
18 # The set_email method sets the email attribute.
19 def set_email(self, email):
20 self.__email = email
21
22 # The get_name method returns the name attribute.
23 def get_name(self):
24 return self.__name
25
26 # The get_phone method returns the phone attribute.
27 def get_phone(self):
28 return self.__phone
29
30 # The get_email method returns the email attribute.
31 def get_email(self):
32 return self.__email
33
34 # The __str__ method returns the object's state
35 # as a string.
36 def __str__(self):
37 return "Name: " + self.__name + \
38 "\nPhone: " + self.__phone + \
39 "\nEmail: " + self.__email

11.3 Working with Instances 455

Next, you could write a program that keeps Contact objects in a dictionary. Each time the
program creates a Contact object holding a specific person’s data, that object would be
stored as a value in the dictionary, using the person’s name as the key. Then, any time you
need to retrieve a specific person’s data, you would use that person’s name as a key to re-
trieve the Contact object from the dictionary.

Program 11-19 shows an example. The program displays a menu that allows the user to
perform any of the following operations:

• Look up a contact in the dictionary
• Add a new contact to the dictionary
• Change an existing contact in the dictionary
• Delete a contact from the dictionary
• Quit the program

Additionally, the program automatically pickles the dictionary and saves it to a file when
the user quits the program. When the program starts, it automatically retrieves and unpick-
les the dictionary from the file. (Recall from Chapter 10 that pickling an object saves it to
a file, and unpickling an object retrieves it from a file.) If the file does not exist, the pro-
gram starts with an empty dictionary.

The program is divided into eight functions: main, load_contacts, get_menu_choice,
look_up, add, change, delete, and save_contacts. Rather than presenting the entire
program at once, let’s first examine the beginning part, which includes the import state-
ments, global constants, and the main function:

Program 11-19 (contact_manager.py: main function)

1 # This program manages contacts.
2 import contact
3 import pickle
4
5 # Global constants for menu choices
6 LOOK_UP = 1
7 ADD = 2
8 CHANGE = 3
9 DELETE = 4

10 QUIT = 5
11
12 # Global constant for the filename
13 FILENAME = 'contacts.dat'
14
15 # main function
16 def main():
17 # Load the existing contact dictionary and
18 # assign it to mycontacts.
19 mycontacts = load_contacts()
20
21 # Initialize a variable for the user's choice.

456 Chapter 11 Classes and Object-Oriented Programming

22 choice = 0
23
24 # Process menu selections until the user
25 # wants to quit the program.
26 while choice != QUIT:
27 # Get the user's menu choice.
28 choice = get_menu_choice()
29
30 # Process the choice.
31 if choice == LOOK_UP:
32 look_up(mycontacts)
33 elif choice == ADD:
34 add(mycontacts)
35 elif choice == CHANGE:
36 change(mycontacts)
37 elif choice == DELETE:
38 delete(mycontacts)
39
40 # Save the mycontacts dictionary to a file.
41 save_contacts(mycontacts)
42

Line 2 imports the contact module, which contains the Contact class. Line 3 imports the
pickle module. The global constants that are initialized in lines 6 through 10 are used to test
the user’s menu selection. The FILENAME constant that is initialized in line 13 holds the name
of the file that will contain the pickled copy of the dictionary, which is contacts.dat.

Inside the main function, line 19 calls the load_contacts function. Keep in mind that if
the program has been run before and names were added to the dictionary, those names have
been saved to the contacts.dat file. The load_contacts function opens the file, gets the
dictionary from it, and returns a reference to the dictionary. If the program has not been
run before, the contacts.dat file does not exist. In that case, the load_contacts func-
tion creates an empty dictionary and returns a reference to it. So, after the statement in line
19 executes, the mycontacts variable references a dictionary. If the program has been run
before, mycontacts references a dictionary containing Contact objects. If this is the first
time the program has run, mycontacts references an empty dictionary.

Line 22 initializes the choice variable with the value 0. This variable will hold the user’s
menu selection.

The while loop that begins in line 26 repeats until the user chooses to quit the program.
Inside the loop, line 28 calls the get_menu_choice function. The get_menu_choice func-
tion displays the following menu:

1. Look up a contact
2. Add a new contact
3. Change an existing contact
4. Delete a contact
5. Quit the program

11.3 Working with Instances 457

The user’s selection is returned from the get_menu_choice function and is assigned to the
choice variable.

The if-elif statement in lines 31 through 38 processes the user’s menu choice. If the user
selects item 1, line 32 calls the look_up function. If the user selects item 2, line 34 calls the
add function. If the user selects item 3, line 36 calls the change function. If the user selects
item 4, line 38 calls the delete function.

When the user selects item 5 from the menu, the while loop stops repeating, and the
statement in line 41 executes. This statement calls the save_contacts function, passing
mycontacts as an argument. The save_contacts function saves the mycontacts dictionary
to the contacts.dat file.

The load_contacts function is next.

Program 11-19 (contact_manager.py: load_contacts function)

43 def load_contacts():
44 try:
45 # Open the contacts.dat file.
46 input_file = open(FILENAME, 'rb')
47
48 # Unpickle the dictionary.
49 contact_dct = pickle.load(input_file)
50
51 # Close the phone_inventory.dat file.
52 input_file.close()
53 except IOError:
54 # Could not open the file, so create
55 # an empty dictionary.
56 contact_dct = {}
57
58 # Return the dictionary.
59 return contact_dct
60

Inside the try suite, line 46 attempts to open the contacts.dat file. If the file is success-
fully opened, line 49 loads the dictionary object from it, unpickles it, and assigns it to the
contact_dct variable. Line 52 closes the file.

If the contacts.dat file does not exist (this will be the case the first time the program
runs), the statement in line 46 raises an IOError exception. That causes the program to
jump to the except clause in line 53. Then, the statement in line 56 creates an empty dic-
tionary and assigns it to the contact_dct variable.

The statement in line 59 returns the contact_dct variable.

The get_menu_choice function is next.

458 Chapter 11 Classes and Object-Oriented Programming

Program 11-19 (contact_manager.py: get_menu_choice function)

61 # The get_menu_choice function displays the menu
62 # and gets a validated choice from the user.
63 def get_menu_choice():
64 print()
65 print('Menu')
66 print('---------------------------')
67 print('1. Look up a contact')
68 print('2. Add a new contact')
69 print('3. Change an existing contact')
70 print('4. Delete a contact')
71 print('5. Quit the program')
72 print()
73
74 # Get the user's choice.
75 choice = int(input('Enter your choice: '))
76
77 # Validate the choice.
78 while choice < LOOK_UP or choice > QUIT:
79 choice = int(input('Enter a valid choice: '))
80
81 # return the user's choice.
82 return choice
83

The statements in lines 64 through 72 display the menu on the screen. Line 75 prompts the
user to enter his or her choice. The input is converted to an int and assigned to the choice
variable. The while loop in lines 78 through 79 validates the user’s input and, if necessary,
prompts the user to reenter his or her choice. Once a valid choice is entered, it is returned
from the function in line 82.

The look_up function is next.

Program 11-19 (contact_manager.py: look_up function)

84 # The look_up function looks up an item in the
85 # specified dictionary.
86 def look_up(mycontacts):
87 # Get a name to look up.
88 name = input('Enter a name: ')
89
90 # Look it up in the dictionary.
91 print(mycontacts.get(name, 'That name is not found.'))
92

11.3 Working with Instances 459

The purpose of the look_up function is to allow the user to look up a specified contact. It
accepts the mycontacts dictionary as an argument. Line 88 prompts the user to enter a
name, and line 91 passes that name as an argument to the dictionary’s get function. One
of the following actions will happen as a result of line 91:

• If the specified name is found as a key in the dictionary, the get method returns a ref-
erence to the Contact object that is associated with that name. The Contact object
is then passed as an argument to the print function. The print function displays the
string that is returned from the Contact object’s __str__ method.

• If the specified name is not found as a key in the dictionary, the get method returns
the string 'That name is not found.', which is displayed by the print function.

The add function is next.

Program 11-19 (contact_manager.py: add function)

93 # The add function adds a new entry into the
94 # specified dictionary.
95 def add(mycontacts):
96 # Get the contact info.
97 name = input('Name: ')
98 phone = input('Phone: ')
99 email = input('Email: ')

100
101 # Create a Contact object named entry.
102 entry = contact.Contact(name, phone, email)
103
104 # If the name does not exist in the dictionary,
105 # add it as a key with the entry object as the
106 # associated value.
107 if name not in mycontacts:
108 mycontacts[name] = entry
109 print('The entry has been added.')
110 else:
111 print('That name already exists.')
112

The purpose of the add function is to allow the user to add a new contact to the dictio-
nary. It accepts the mycontacts dictionary as an argument. Lines 97 through 99 prompt
the user to enter a name, a phone number, and an email address. Line 102 creates a new
Contact object, initialized with the data entered by the user.

The if statement in line 107 determines whether the name is already in the dictionary. If
not, line 108 adds the newly created Contact object to the dictionary, and line 109 prints
a message indicating that the new data is added. Otherwise, a message indicating that the
entry already exists is printed in line 111.

The change function is next.

460 Chapter 11 Classes and Object-Oriented Programming

Program 11-19 (contact_manager.py: change function)

113 # The change function changes an existing
114 # entry in the specified dictionary.
115 def change(mycontacts):
116 # Get a name to look up.
117 name = input('Enter a name: ')
118
119 if name in mycontacts:
120 # Get a new phone number.
121 phone = input('Enter the new phone number: ')
122
123 # Get a new email address.
124 email = input('Enter the new email address: ')
125
126 # Create a contact object named entry.
127 entry = contact.Contact(name, phone, email)
128
129 # Update the entry.
130 mycontacts[name] = entry
131 print('Information updated.')
132 else:
133 print('That name is not found.')
134

The purpose of the change function is to allow the user to change an existing contact in
the dictionary. It accepts the mycontacts dictionary as an argument. Line 117 gets a name
from the user. The if statement in line 119 determines whether the name is in the dictio-
nary. If so, line 121 gets the new phone number, and line 124 gets the new email address.
Line 127 creates a new Contact object initialized with the existing name and the new
phone number and email address. Line 130 stores the new Contact object in the dictio-
nary, using the existing name as the key.

If the specified name is not in the dictionary, line 133 prints a message indicating so.

The delete function is next.

Program 11-19 (contact_manager.py: delete function)

135 # The delete function deletes an entry from the
136 # specified dictionary.
137 def delete(mycontacts):
138 # Get a name to look up.
139 name = input('Enter a name: ')
140
141 # If the name is found, delete the entry.
142 if name in mycontacts:

11.3 Working with Instances 461

(program continues)

462 Chapter 11 Classes and Object-Oriented Programming

Program 11-19 (continued)

143 del mycontacts[name]
144 print('Entry deleted.')
145 else:
146 print('That name is not found.')
147

The purpose of the delete function is to allow the user to delete an existing contact from
the dictionary. It accepts the mycontacts dictionary as an argument. Line 139 gets a name
from the user. The if statement in line 142 determines whether the name is in the dictio-
nary. If so, line 143 deletes it, and line 144 prints a message indicating that the entry was
deleted. If the name is not in the dictionary, line 146 prints a message indicating so.

The save_contacts function is next.

Program 11-19 (contact_manager.py: save_contacts function)

148 # The save_contacts funtion pickles the specified
149 # object and saves it to the contacts file.
150 def save_contacts(mycontacts):
151 # Open the file for writing.
152 output_file = open(FILENAME, 'wb')
153
154 # Pickle the dictionary and save it.
155 pickle.dump(mycontacts, output_file)
156
157 # Close the file.
158 output_file.close()
159
160 # Call the main function.
161 main()

The save_contacts function is called just before the program stops running. It accepts the
mycontacts dictionary as an argument. Line 152 opens the contacts.dat file for writing.
Line 155 pickles the mycontacts dictionary and saves it to the file. Line 158 closes the file.

The following program output shows two sessions with the program. The sample output
does not demonstrate everything the program can do, but it does demonstrate how contacts
are saved when the program ends and then loaded when the program runs again.

Program Output (with input shown in bold)

Menu

1. Look up a contact
2. Add a new contact

11.3 Working with Instances 463

3. Change an existing contact
4. Delete a contact
5. Quit the program

Enter your choice: 2 e

Name: Matt Goldstein e

Phone: 617-555-1234 e

Email: matt@fakecompany.com e

The entry has been added.

Menu

1. Look up a contact
2. Add a new contact
3. Change an existing contact
4. Delete a contact
5. Quit the program

Enter your choice: 2 e

Name: Jorge Ruiz e

Phone: 919-555-1212 e

Email: jorge@myschool.edu e

The entry has been added.

Menu

1. Look up a contact
2. Add a new contact
3. Change an existing contact
4. Delete a contact
5. Quit the program

Enter your choice: 5 e

Program Output (with input shown in bold)

Menu

1. Look up a contact
2. Add a new contact
3. Change an existing contact
4. Delete a contact
5. Quit the program

Enter your choice: 1 e

Enter a name: Matt Goldstein e

Name: Matt Goldstein
Phone: 617-555-1234
Email: matt@fakecompany.com

(program output continues)

464 Chapter 11 Classes and Object-Oriented Programming

Program Output (continued)

Menu

1. Look up a contact
2. Add a new contact
3. Change an existing contact
4. Delete a contact
5. Quit the program

Enter your choice: 1 e

Enter a name: Jorge Ruiz e

Name: Jorge Ruiz
Phone: 919-555-1212
Email: jorge@myschool.edu

Menu

1. Look up a contact
2. Add a new contact
3. Change an existing contact
4. Delete a contact
5. Quit the program

Enter your choice: 5 e

Checkpoint

11.12 What is an instance attribute?

11.13 A program creates 10 instances of the Coin class. How many __sideup attributes
exist in memory?

11.14 What is an accessor method? What is a mutator method?

11.4 Techniques for Designing Classes

The Unified Modeling Language
When designing a class, it is often helpful to draw a UML diagram. UML stands for Unified
Modeling Language. It provides a set of standard diagrams for graphically depicting object-
oriented systems. Figure 11-10 shows the general layout of a UML diagram for a class.
Notice that the diagram is a box that is divided into three sections. The top section is where
you write the name of the class. The middle section holds a list of the class’s data attri-
butes. The bottom section holds a list of the class’s methods.

11.4 Techniques for Designing Classes 465

Following this layout, Figure 11-11 and 11-12 show UML diagrams for the Coin class and
the CellPhone class that you saw previously in this chapter. Notice that we did not show
the self parameter in any of the methods, since it is understood that the self parameter
is required.

Class name goes here

Data attributes are listed here

Methods are listed here

Coin

__sideup

__init__()
toss()
get_sideup()

CellPhone

__manufact
__model
__retail_price

__init__(manufact, model, price)
set_manufact(manufact)
set_model(model)
set_retail_price(price)
get_manufact()
get_model()
get_retail_price()

Figure 11-10 General layout of a UML diagram for a class

Figure 11-11 UML diagram for the Coin class

Figure 11-12 UML diagram for the CellPhone class

Finding the Classes in a Problem
When developing an object-oriented program, one of your first tasks is to identify the classes
that you will need to create. Typically, your goal is to identify the different types of real-world
objects that are present in the problem, and then create classes for those types of objects
within your application.

Over the years, software professionals have developed numerous techniques for finding the
classes in a given problem. One simple and popular technique involves the following steps.

1. Get a written description of the problem domain.
2. Identify all the nouns (including pronouns and noun phrases) in the description. Each

of these is a potential class.
3. Refine the list to include only the classes that are relevant to the problem.

Let’s take a closer look at each of these steps.

466 Chapter 11 Classes and Object-Oriented Programming

Writing a Description of the Problem Domain

The problem domain is the set of real-world objects, parties, and major events related to the
problem. If you adequately understand the nature of the problem you are trying to solve, you
can write a description of the problem domain yourself. If you do not thoroughly understand
the nature of the problem, you should have an expert write the description for you.

For example, suppose we are writing a program that the manager of Joe’s Automotive Shop
will use to print service quotes for customers. Here is a description that an expert, perhaps
Joe himself, might have written:

Joe’s Automotive Shop services foreign cars and specializes in servicing cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets
the customer’s name, address, and telephone number. The manager then determines the make,
model, and year of the car, and gives the customer a service quote. The service quote shows
the estimated parts charges, estimated labor charges, sales tax, and total estimated charges.

The problem domain description should include any of the following:

• Physical objects such as vehicles, machines, or products
• Any role played by a person, such as manager, employee, customer, teacher, student, etc.
• The results of a business event, such as a customer order, or in this case a service quote
• Recordkeeping items, such as customer histories and payroll records

Identify All of the Nouns

The next step is to identify all of the nouns and noun phrases. (If the description contains
pronouns, include them too.) Here’s another look at the previous problem domain descrip-
tion. This time the nouns and noun phrases appear in bold.

Joe’s Automotive Shop services foreign cars, and specializes in servicing cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets
the customer’s name, address, and telephone number. The manager then determines the make,
model, and year of the car, and gives the customer a service quote. The service quote shows
the estimated parts charges, estimated labor charges, sales tax, and total estimated charges.

Notice that some of the nouns are repeated. The following list shows all of the nouns with-
out duplicating any of them.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe’s Automotive Shop
make
manager
Mercedes
model
name

11.4 Techniques for Designing Classes 467

Porsche
sales tax,
service quote
shop
telephone number
total estimated charges
year

Refining the List of Nouns

The nouns that appear in the problem description are merely candidates to become classes. It
might not be necessary to make classes for them all. The next step is to refine the list to in-
clude only the classes that are necessary to solve the particular problem at hand. We will look
at the common reasons that a noun can be eliminated from the list of potential classes.

1. Some of the nouns really mean the same thing.

In this example, the following sets of nouns refer to the same thing:

• car, cars, and foreign cars
These all refer to the general concept of a car.

• Joe’s Automotive Shop and shop
Both of these refer to the company “Joe’s Automotive Shop.”

We can settle on a single class for each of these. In this example we will arbitrarily eliminate
foreign cars from the list, and use the word cars. Likewise we will eliminate Joe’s Automotive
Shop from the list and use the word shop. The updated list of potential classes is:

address

BMW

car

cars

customer

estimated labor charges

estimated parts charges

foreign cars

Joe’s Automotive Shop

make

manager

Mercedes

model

name

Porsche

sales tax

service quote

Because car, cars, and foreign cars mean the
same thing in this problem, we have
eliminated cars and foreign cars. Also,
because Joe’s Automotive Shop and shop
mean the same thing, we have eliminated
Joe’s Automotive Shop.

(continued)

468 Chapter 11 Classes and Object-Oriented Programming

2. Some nouns might represent items that we do not need to be concerned with in order
to solve the problem.

A quick review of the problem description reminds us of what our application should do:
print a service quote. In this example we can eliminate two unnecessary classes from the list:

• We can cross shop off the list because our application only needs to be concerned
with individual service quotes. It doesn’t need to work with or determine any
company-wide information. If the problem description asked us to keep a total of all
the service quotes, then it would make sense to have a class for the shop.

• We will not need a class for the manager because the problem statement does not di-
rect us to process any information about the manager. If there were multiple shop man-
agers, and the problem description had asked us to record which manager generated
each service quote, then it would make sense to have a class for the manager.

The updated list of potential classes at this point is:

address

BMW

car

cars

customer

estimated labor charges

estimated parts charges

foreign cars

Joe’s Automotive Shop

make

manager

Mercedes

model

name

Porsche

sales tax

service quote

shop

telephone number

total estimated charges

year

Our problem description does not direct us to
process any information about the shop, or
any information about the manager, so we
have eliminated those from the list.

shop

telephone number

total estimated charges

year

11.4 Techniques for Designing Classes 469

4. Some of the nouns might represent simple values that can be assigned to a variable
and do not require a class.

Remember, a class contains data attributes and methods. Data attributes are related items
that are stored in an object of the class, and define the object’s state. Methods are actions
or behaviors that can be performed by an object of the class. If a noun represents a type of
item that would not have any identifiable data attributes or methods, then it can probably
be eliminated from the list. To help determine whether a noun represents an item that
would have data attributes and methods, ask the following questions about it:

• Would you use a group of related values to represent the item’s state?
• Are there any obvious actions to be performed by the item?

NOTE: Some object-oriented designers take note of whether a noun is plural or singular.
Sometimes a plural noun will indicate a class and a singular noun will indicate an object.

address
BMW
car
cars
customer
estimated labor charges
estimated parts charges
foreign cars
Joe’s Automotive Shop
manager
make
Mercedes
model
name
Porsche
sales tax
service quote
shop
telephone number
total estimated charges
year

We have eliminated Mercedes, Porsche, and
BMW because they are all instances of a cars
class. That means that these nouns identify
objects, not classes.

3. Some of the nouns might represent objects, not classes.

We can eliminate Mercedes, Porsche, and BMW as classes because, in this example, they
all represent specific cars, and can be considered instances of a car class. At this point the
updated list of potential classes is:

470 Chapter 11 Classes and Object-Oriented Programming

As you can see from the list, we have eliminated everything except car, customer, and
service quote. This means that in our application, we will need classes to represent cars,
customers, and service quotes. Ultimately, we will write a Car class, a Customer class, and
a ServiceQuote class.

Identifying a Class’s Responsibilities
Once the classes have been identified, the next task is to identify each class’s responsibili-
ties. A class’s responsibilities are

• the things that the class is responsible for knowing
• the actions that the class is responsible for doing

Address

BMW

car

cars

customer

estimated labor charges

estimated parts charges

foreign cars

Joe’s Automotive Shop

make

manager

Mercedes

model

name

Porsche

sales tax

service quote

shop

telephone number

total estimated charges

year

We have eliminated address, estimated
labor charges, estimated parts charges,
make, model, name, sales tax, telephone
number, total estimated charges, and
year as classes because they represent
simple values that can be stored in
variables.

If the answers to both of these questions are no, then the noun probably represents a
value that can be stored in a simple variable. If we apply this test to each of the nouns
that remain in our list, we can conclude that the following are probably not classes: ad-
dress, estimated labor charges, estimated parts charges, make, model, name, sales tax,
telephone number, total estimated charges, and year. These are all simple string or nu-
meric values that can be stored in variables. Here is the updated list of potential classes:

11.4 Techniques for Designing Classes 471

When you have identified the things that a class is responsible for knowing, then you have
identified the class’s data attributes. Likewise, when you have identified the actions that a
class is responsible for doing, you have identified its methods.

It is often helpful to ask the questions “In the context of this problem, what must the
class know? What must the class do?” The first place to look for the answers is in the de-
scription of the problem domain. Many of the things that a class must know and do will
be mentioned. Some class responsibilities, however, might not be directly mentioned in
the problem domain, so further consideration is often required. Let’s apply this method-
ology to the classes we previously identified from our problem domain.

The Customer Class

In the context of our problem domain, what must the Customer class know? The description
directly mentions the following items, which are all data attributes of a customer:

• the customer’s name
• the customer’s address
• the customer’s telephone number

These are all values that can be represented as strings and stored as data attributes. The
Customer class can potentially know many other things. One mistake that can be made at
this point is to identify too many things that an object is responsible for knowing. In some
applications, a Customer class might know the customer’s email address. This particular
problem domain does not mention that the customer’s email address is used for any purpose,
so we should not include it as a responsibility.

Now let’s identify the class’s methods. In the context of our problem domain, what must
the Customer class do? The only obvious actions are:

• initialize an object of the Customer class
• set and return the customer’s name
• set and return the customer’s address
• set and return the customer’s telephone number

From this list we can see that the Customer class will have an __init__ method, as well
as accessors and mutators for the data attributes. Figure 11-13 shows a UML diagram for
the Customer class. The Python code for the class is shown in Program 11-20.

Figure 11-13 UML diagram for the Customer class

Customer

__name
__address
__phone

__init__()
set_name(name)
set_address(address)
set_phone(phone)
get_name()
get_address()
get_phone()

472 Chapter 11 Classes and Object-Oriented Programming

Program 11-20 (customer.py)

1 # Customer class
2 class Customer:
3 def __init__(self, name, address, phone):
4 self.__name = name
5 self.__address = address
6 self.__phone = phone
7
8 def set_name(self, name):
9 self.__name = name

10
11 def set_address(self, address):
12 self.__address = address
13
14 def set_phone(self, phone):
15 self.__phone = phone
16
17 def get_name(self):
18 return self.__name
19
20 def get_address(self):
21 return self.__address
22
23 def get_phone(self):
24 return self.__phone

The Car Class

In the context of our problem domain, what must an object of the Car class know?
The following items are all data attributes of a car, and are mentioned in the problem
domain:

• the car’s make
• the car’s model
• the car’s year

Now let’s identify the class’s methods. In the context of our problem domain, what must
the Car class do? Once again, the only obvious actions are the standard set of methods that
we will find in most classes (an __init__ method, accessors, and mutators). Specifically,
the actions are:

• initialize an object of the Car class
• set and get the car’s make
• set and get the car’s model
• set and get the car’s year

Figure 11-14 shows a UML diagram for the Car class at this point. The Python code for
the class is shown in Program 11-21.

11.4 Techniques for Designing Classes 473

Program 11-21 (car.py)

1 # Car class
2 class Car:
3 def __init__(self, make, model, year):
4 self.__make = make
5 self.__model = model
6 self.__year = year
7
8 def set_make(self, make):
9 self.__make = make

10
11 def set_model(self, model):
12 self.__model = model
13
14 def set_year(self, year):
15 self.__year = year
16
17 def get_make(self):
18 return self.__make
19
20 def get_model(self):
21 return self.__model
22
23 def get_year(self):
24 return self.__year

The ServiceQuote Class

In the context of our problem domain, what must an object of the ServiceQuote class
know? The problem domain mentions the following items:

• the estimated parts charges
• the estimated labor charges

Figure 11-14 UML diagram for the Car class

Car

__make
__model
__year

__init__()
set_make(make)
set_model(make)
set_year(y)
get_make()
get_model()
get_year()

474 Chapter 11 Classes and Object-Oriented Programming

• the sales tax
• the total estimated charges

The methods that we will need for this class are an __init__ method and the accessors
and mutators for the estimated parts charges and estimated labor charges attributes. In ad-
dition, the class will need methods that calculate and return the sales tax and the total es-
timated charges. Figure 11-15 shows a UML diagram for the ServiceQuote class.
Program 11-22 shows an example of the class in Python code.

Program 11-22 (servicequote.py)

1 # Constant for the sales tax rate
2 TAX_RATE = 0.05
3
4 # ServiceQuote class
5 class ServiceQuote:
6 def __init__(self, pcharge, lcharge):
7 self.__parts_charges = pcharge
8 self.__labor_charges = lcharge
9

10 def set_parts_charges(self, pcharge):
11 self.__parts_charges = pcharge
12
13 def set_labor_charges(self, lcharge):
14 self.__labor_charges = lcharge
15
16 def get_parts_charges(self):
17 return self.__parts_charges
18
19 def get_labor_charges(self):
20 return self.__labor_charges
21
22 def get_sales_tax(self):
23 return __parts_charges * TAX_RATE
24

Figure 11-15 UML diagram for the ServiceQuote class

ServiceQuote

__parts_charges
__labor_charges

__init__()
set_parts_charges(pcharge)
set_labor_charges(lcharge)
get_parts_charges()
get_labor_charges()
get_sales_tax()
get_total_charges()

Review Questions 475

25 def get_total_charges(self):
26 return __parts_charges + __labor_charges + \
27 (__parts_charges * TAX_RATE)

This Is only the Beginning
You should look at the process that we have discussed in this section merely as a start-
ing point. It’s important to realize that designing an object-oriented application is an it-
erative process. It may take you several attempts to identify all of the classes that you will
need and determine all of their responsibilities. As the design process unfolds, you will
gain a deeper understanding of the problem, and consequently you will see ways to im-
prove the design.

Checkpoint

11.15 The typical UML diagram for a class has three sections. What appears in these
three sections?

11.16 What is a problem domain?

11.17 When designing an object-oriented application, who should write a description of
the problem domain?

11.18 How do you identify the potential classes in a problem domain description?

11.19 What are a class’s responsibilities?

11.20 What two questions should you ask to determine a class’s responsibilities?

11.21 Will all of a classes actions always be directly mentioned in the problem domain
description?

Review Questions
Multiple Choice

1. The ______________ programming practice is centered on creating functions that are
separate from the data that they work on.
a. modular
b. procedural
c. functional
d. object-oriented

2. The ______________ programming practice is centered on creating objects.
a. object-centric
b. objective
c. procedural
d. object-oriented

3. A(n) ______________ is a component of a class that references data.
a. method
b. instance
c. data attribute
d. module

4. An object is a(n) ______________.
a. blueprint
b. cookie cutter
c. variable
d. instance

5. By doing this you can hide a class’s attribute from code outside the class.
a. avoid using the self parameter to create the attribute
b. begin the attribute’s name with two underscores
c. begin the name of the attribute with private__
d. begin the name of the attribute with the @ symbol

6. A(n) ______________ method gets the value of a data attribute but does not change
it.
a. retriever
b. constructor
c. mutator
d. accessor

7. A(n) ______________ method stores a value in a data attribute or changes its value in
some other way.
a. modifier
b. constructor
c. mutator
d. accessor

8. The ______________ method is automatically called when an object is created.
a. __init__
b. init
c. __str__
d. __object__

9. If a class has a method named __str__, which of these is a way to call the method?
a. you call it like any other method: object.__str__()
b. by passing an instance of the class to the built in str function
c. the method is automatically called when the object is created
d. by passing an instance of the class to the built-in state function

10. A set of standard diagrams for graphically depicting object-oriented systems is pro-
vided by ______________.
a. the Unified Modeling Language
b. flowcharts

476 Chapter 11 Classes and Object-Oriented Programming

Review Questions 477

c. pseudocode
d. the Object Hierarchy System

11. In one approach to identifying the classes in a problem, the programmer identifies the
______________ in a description of the problem domain.
a. verbs
b. adjectives
c. adverbs
d. nouns

12. In one approach to identifying a class’s data attributes and methods, the programmer
identifies the class’s ______________.
a. responsibilities
b. name
c. synonyms
d. nouns

True or False

1. The practice of procedural programming is centered on the creation of objects.

2. Object reusability has been a factor in the increased use of object-oriented programming.

3. It is a common practice in object-oriented programming to make all of a class’s data at-
tributes accessible to statements outside the class.

4. A class method does not have to have a self parameter.

5. Starting an attribute name with two underscores will hide the attribute from code out-
side the class.

6. You cannot directly call the __str__ method.

7. One way to find the classes needed for an object-oriented program is to identify all of
the verbs in a description of the problem domain.

Short Answer

1. What is encapsulation?

2. Why should an object’s data attributes be hidden from code outside the class?

3. What is the difference between a class and an instance of a class?

4. The following statement calls an object’s method. What is the name of the method?
What is the name of the variable that references the object?

wallet.get_dollar()

5. When the __init__ method executes, what does the self parameter reference?

6. In a Python class, how do you hide an attribute from code outside the class?

7. How do you call the __str__ method?

Algorithm Workbench

1. Suppose my_car is the name of a variable that references an object, and go is the name of
a method. Write a statement that uses the my_car variable to call the go method. (You do
not have to pass any arguments to the go method.)

478 Chapter 11 Classes and Object-Oriented Programming

2. Write a class definition named Book. The Book class should have data attributes for a
book’s title, the author’s name, and the publisher’s name. The class should also have
the following:
a. An __init__ method for the class. The method should accept an argument for

each of the data attributes.
b. Accessor and mutator methods for each data attribute.
c. An __str__ method that returns a string indicating the state of the object.

3. Look at the following description of a problem domain:

The bank offers the following types of accounts to its customers: savings accounts,
checking accounts, and money market accounts. Customers are allowed to deposit
money into an account (thereby increasing its balance), withdraw money from an ac-
count (thereby decreasing its balance), and earn interest on the account. Each account
has an interest rate.

Assume that you are writing a program that will calculate the amount of interest
earned for a bank account.

a. Identify the potential classes in this problem domain.
b. Refine the list to include only the necessary class or classes for this problem.
c. Identify the responsibilities of the class or classes.

Programming Exercises
1. Pet Class

Write a class named Pet, which should have the following data attributes:

• __name (for the name of a pet)
• __animal_type (for the type of animal that a pet is. Example values are ‘Dog’, ‘Cat’,

and ‘Bird’)
• __age (for the pet’s age)

The Pet class should have an __init__ method that creates these attributes. It should also
have the following methods:

• set_name
This method assigns a value to the __name field.

• set_animal_type
This method assigns a value to the __animal_type field.

• set_age
This method assigns a value to the __age field.

• get_name
This method returns the value of the name field.

• get_type
This method returns the value of the type field.

• get_age
This method returns the value of the age field.

Once you have written the class, write a program that creates an object of the class and
prompts the user to enter the name, type, and age of his or her pet. This data should be

VideoNote
The Pet class

Programming Exercises 479

stored as the object’s attributes. Use the object’s accessor methods to retrieve the pet’s name,
type, and age and display this data on the screen.

2. Car Class

Write a class named Car that has the following data attributes:

• __year_model (for the car’s year model)
• __make (for the make of the car)
• __speed (for the car’s current speed)

The Car class should have an __init__ method that accept the car’s year model and make
as arguments. These values should be assigned to the object’s __year_model and __make
data attributes. It should also assign 0 to the __speed data attribute.

The class should also have the following methods:

• accelerate
The accelerate method should add 5 to the speed data attribute each time it is
called.

• brake
The brake method should subtract 5 from the speed data attribute each time it is called.

• get_speed
The get_speed method should return the current speed.

Next, design a program that creates a Car object, and then calls the accelerate method
five times. After each call to the accelerate method, get the current speed of the car and
display it. Then call the brake method five times. After each call to the brake method, get
the current speed of the car and display it.

3. Personal Information Class

Design a class that holds the following personal data: name, address, age, and phone num-
ber. Write appropriate accessor and mutator methods. Also, write a program that creates
three instances of the class. One instance should hold your information, and the other two
should hold your friends’ or family members’ information.

4. Employee Class

Write a class named Employee that holds the following data about an employee in attrib-
utes: name, ID number, department, and job title.

Once you have written the class, write a program that creates three Employee objects to
hold the following data:

Name ID Number Department Job Title

Susan Meyers 47899 Accounting Vice President

Mark Jones 39119 IT Programmer

Joy Rogers 81774 Manufacturing Engineer

480 Chapter 11 Classes and Object-Oriented Programming

Description Units in Inventory Price

Item #1 Jacket 12 59.95

Item #2 Designer Jeans 40 34.95

Item #3 Shirt 20 24.95

The program should store this data in the three objects and then display the data for each
employee on the screen.

5. RetailItem Class

Write a class named RetailItem that holds data about an item in a retail store. The class
should store the following data in attributes: item description, units in inventory, and price.

Once you have written the class, write a program that creates three RetailItem objects
and stores the following data in them:

6. Employee Management System

This exercise assumes that you have created the Employee class for Programming Exercise 4.
Create a program that stores Employee objects in a dictionary. Use the employee ID number
as the key. The program should present a menu that lets the user perform the following ac-
tions:

• Look up an employee in the dictionary
• Add a new employee to the dictionary
• Change an existing employee’s name, department, and job title in the dictionary
• Delete an employee from the dictionary
• Quit the program

When the program ends, it should pickle the dictionary and save it to a file. Each time the
program starts, it should try to load the pickled dictionary from the file. If the file does not
exist, the program should start with an empty dictionary.

7. Cash Register

This exercise assumes that you have created the RetailItem class for Programming
Exercise 5. Create a CashRegister class that can be used with the RetailItem class. The
CashRegister class should be able to internally keep a list of RetailItem objects. The
class should have the following methods:

• A method named purchase_item that accepts a RetailItem object as an argument.
Each time the purchase_item method is called, the RetailItem object that is passed as
an argument should be added to the list.

• A method named get_total that returns the total price of all the RetailItem objects
stored in the CashRegister object’s internal list.

• A method named show_items that displays data about the RetailItem objects stored
in the CashRegister object’s internal list.

• A method named clear that should clear the CashRegister object’s internal list.

Demonstrate the CashRegister class in a program that allows the user to select several
items for purchase. When the user is ready to check out, the program should display a list
of all the items he or she has selected for purchase, as well as the total price.

Programming Exercises 481

8. Trivia Game

In this programming exercise you will create a simple trivia game for two players. The pro-
gram will work like this:

• Starting with player 1, each player gets a turn at answering 5 trivia questions. (There
should be a total of 10 questions.) When a question is displayed, 4 possible answers are
also displayed. Only one of the answers is correct, and if the player selects the correct
answer, he or she earns a point.

• After answers have been selected for all the questions, the program displays the number
of points earned by each player and declares the player with the highest number of points
the winner.

To create this program, write a Question class to hold the data for a trivia question. The
Question class should have attributes for the following data:

• A trivia question
• Possible answer 1
• Possible answer 2
• Possible answer 3
• Possible answer 4
• The number of the correct answer (1, 2, 3, or 4)

The Question class also should have an appropriate __init__ method, accessors, and
mutators.

The program should have a list or a dictionary containing 10 Question objects, one for
each trivia question. Make up your own trivia questions on the subject or subjects of your
choice for the objects.

This page intentionally left blank

12.1 Introduction to Inheritance

CONCEPT: Inheritance allows a new class to extend an existing class. The new class
inherits the members of the class it extends.

Generalization and Specialization
In the real world, you can find many objects that are specialized versions of other more
general objects. For example, the term “insect” describes a general type of creature with
various characteristics. Because grasshoppers and bumblebees are insects, they have all the
general characteristics of an insect. In addition, they have special characteristics of their
own. For example, the grasshopper has its jumping ability, and the bumblebee has its
stinger. Grasshoppers and bumblebees are specialized versions of an insect. This is illustrated
in Figure 12-1.

Inheritance12
TOPICS

12.1 Introduction to Inheritance
12.2 Polymorphism

C
H

A
P

T
E

R

483

484 Chapter 12 Inheritance

Inheritance and the “Is a” Relationship
When one object is a specialized version of another object, there is an “is a” relationship
between them. For example, a grasshopper is an insect. Here are a few other examples of
the “is a” relationship:

• A poodle is a dog.
• A car is a vehicle.
• A flower is a plant.
• A rectangle is a shape.
• A football player is an athlete.

When an “is a” relationship exists between objects, it means that the specialized object has
all of the characteristics of the general object, plus additional characteristics that make it
special. In object-oriented programming, inheritance is used to create an “is a” relationship
among classes. This allows you to extend the capabilities of a class by creating another class
that is a specialized version of it.

Inheritance involves a superclass and a subclass. The superclass is the general class and the
subclass is the specialized class. You can think of the subclass as an extended version of the
superclass. The subclass inherits attributes and methods from the superclass without any of
them having to be rewritten. Furthermore, new attributes and methods may be added to the
subclass, and that is what makes it a specialized version of the superclass.

Figure 12-1 Bumblebees and grasshoppers are specialized versions of an insect

Insect
All insects have

certain characteristics.

In addition to the common
insect characteristics, the

 bumblebee has its own unique
characteristics such as the

ability to sting.

In addition to the common
insect characteristics, the

 grasshopper has its own unique
characteristics such as the

ability to jump.

NOTE: Superclasses are also called base classes, and subclasses are also called derived
classes. Either set of terms is correct. For consistency, this text will use the terms super-
class and subclass.

Let’s look at an example of how inheritance can be used. Suppose we are developing a
program that a car dealership can use to manage its inventory of used cars. The dealer-
ship’s inventory includes three types of automobiles: cars, pickup trucks, and sport-utility

12.1 Introduction to Inheritance 485

vehicles (SUVs). Regardless of the type, the dealership keeps the following data about
each automobile:

• Make
• Year model
• Mileage
• Price

Each type of vehicle that is kept in inventory has these general characteristics, plus its own
specialized characteristics. For cars, the dealership keeps the following additional data:

• Number of doors (2 or 4)

For pickup trucks, the dealership keeps the following additional data:

• Drive type (two-wheel drive or four-wheel drive)

And for SUVs, the dealership keeps the following additional data:

• Passenger capacity

In designing this program, one approach would be to write the following three classes:

• A Car class with data attributes for the make, year model, mileage, price, and the
number of doors.

• A Truck class with data attributes for the make, year model, mileage, price, and the
drive type.

• An SUV class with data attributes for the make, year model, mileage, price, and the
passenger capacity.

This would be an inefficient approach, however, because all three of the classes have a large
number of common data attributes. As a result, the classes would contain a lot of duplicated
code. In addition, if we discover later that we need to add more common attributes, we
would have to modify all three classes.

A better approach would be to write an Automobile superclass to hold all the general data
about an automobile and then write subclasses for each specific type of automobile.
Program 12-1 shows the Automobile class’s code, which appears in a module named
vehicles.

Program 12-1 (Lines 1 through 44 of vehicles.py)

1 # The Automobile class holds general data
2 # about an automobile in inventory.
3
4 class Automobile:
5 # The __init__method accepts arguments for the
6 # make, model, mileage, and price. It initializes
7 # the data attributes with these values.
8
9 def __init__(self, make, model, mileage, price):

10 self.__make = make
(program continues)

486 Chapter 12 Inheritance

Program 12-1 (continued)

11 self.__model = model
12 self.__mileage = mileage
13 self.__price = price
14
15 # The following methods are mutators for the
16 # class's data attributes.
17
18 def set_make(self, make):
19 self.__make = make
20
21 def set_model(self, model):
22 self.__model = model
23
24 def set_mileage(self, mileage):
25 self.__mileage = mileage
26
27 def set_price(self, price):
28 self.__price = price
29
30 # The following methods are the accessors
31 # for the class's data attributes.
32
33 def get_make(self):
34 return self.__make
35
36 def get_model(self):
37 return self.__model
38
39 def get_mileage(self):
40 return self.__mileage
41
42 def get_price(self):
43 return self.__price
44

The Automobile class’s __init__ method accepts arguments for the vehicle’s make,
model, mileage, and price. It uses those values to initialize the following data attributes:

• __make
• __model
• __mileage
• __price

(Recall from Chapter 11 that a data attribute becomes hidden when its name begins with
two underscores.) The methods that appear in lines 18 through 28 are mutators for each of
the data attributes, and the methods in lines 33 through 43 are the accessors.

12.1 Introduction to Inheritance 487

The Automobile class is a complete class that we can create objects from. If we wish, we
can write a program that imports the vehicle module and creates instances of the
Automobile class. However, the Automobile class holds only general data about an auto-
mobile. It does not hold any of the specific pieces of data that the dealership wants to keep
about cars, pickup trucks, and SUVs. To hold data about those specific types of automo-
biles we will write subclasses that inherit from the Automobile class. Program 12-2 shows
the code for the Car class, which is also in the vehicles module.

Program 12-2 (Lines 45 through 72 of vehicles.py)

45 # The Car class represents a car. It is a subclass
46 # of the Automobile class.
47
48 class Car(Automobile):
49 # The __init__ method accepts arguments for the
50 # car's make, model, mileage, price, and doors.
51
52 def __init__(self, make, model, mileage, price, doors):
53 # Call the superclass's __init__ method and pass
54 # the required arguments. Note that we also have
55 # to pass self as an argument.
56 Automobile.__init__(self, make, model, mileage, price)
57
58 # Initialize the __doors attribute.
59 self.__doors = doors
60
61 # The set_doors method is the mutator for the
62 # __doors attribute.
63
64 def set_doors(self, doors):
65 self.__doors = doors
66
67 # The get_doors method is the accessor for the
68 # __doors attribute.
69
70 def get_doors(self):
71 return self.__doors
72

Take a closer look at the first line of the class declaration, in line 48:

class Car(Automobile):

This line indicates that we are defining a class named Car, and it inherits from the Automobile
class. The Car class is the subclass and the Automobile class is the superclass. If we want to
express the relationship between the Car class and the Automobile class, we can say that a Car
is an Automobile. Because the Car class extends the Automobile class, it inherits all of the
methods and data attributes of the Automobile class.

488 Chapter 12 Inheritance

Look at the header for the __init__ method in line 52:

def __init__(self, make, model, mileage, price, doors):

Notice that in addition to the required self parameter, the method has parameters named
make, model, mileage, price, and doors. This makes sense because a Car object will have
data attributes for the car’s make, model, mileage, price, and number of doors. Some of these
attributes are created by the Automobile class, however, so we need to call the Automobile
class’s __init__ method and pass those values to it. That happens in line 56:

Automobile.__init__(self, make, model, mileage, price)

This statement calls the Automobile class’s __init__ method. Notice that the statement
passes the self variable, as well as the make, model, mileage, and price variables as argu-
ments. When that method executes, it initializes the __make, __model, __mileage, and
__price data attributes. Then, in line 59, the __doors attribute is initialized with the
value passed into the doors parameter:

self.__doors = doors

The set_doors method, in lines 64 through 65, is the mutator for the __doors attribute,
and the get_doors method, in lines 70 through 71 is the accessor for the __doors attri-
bute. Before going any further, let’s demonstrate the Car class, as shown in Program 12-3.

Program 12-3 (car_demo.py)

1 # This program demonstrates the Car class.
2
3 import vehicles
4
5 def main():
6 # Create an object from the Car class.
7 # The car is a 2007 Audi with 12,500 miles, priced
8 # at $21,500.00, and has 4 doors.
9 used_car = vehicles.Car('Audi', 2007, 12500, 21500.00, 4)

10
11 # Display the car's data.
12 print('Make:', used_car.get_make())
13 print('Model:', used_car.get_model())
14 print('Mileage:', used_car.get_mileage())
15 print('Price:', used_car.get_price())
16 print('Number of doors:', used_car.get_doors())
17
18 # Call the main function.
19 main()

Program Output

Make: Audi
Model: 2007

12.1 Introduction to Inheritance 489

Mileage: 12500
Price: 21500.0
Number of doors: 4

Line 3 imports the vehicles module, which contains the class definitions for the
Automobile and Car classes. Line 9 creates an instance of the Car class, passing 'Audi' as
the car’s make, 2007 as the car’s model, 125,00 as the mileage, 21,500.00 as the car’s price,
and 4 as the number of doors. The resulting object is assigned to the used_car variable.

The statements in lines 12 through 15 calls the object’s get_make, get_model,
get_mileage, and get_price methods. Even though the Car class does not have any of
these methods, it inherits them from the Automobile class. Line 16 calls the get_doors
method, which is defined in the Car class.

Now let’s look at the Truck class, which also inherits from the Automobile class. The code
for the Truck class, which is also in the vehicles module, is shown in Program 12-4.

Program 12-4 (Lines 73 through 100 of vehicles.py)

73 # The Truck class represents a pickup truck. It is a
74 # subclass of the Automobile class.
75
76 class Truck(Automobile):
77 # The __init__ method accepts arguments for the
78 # Truck's make, model, mileage, price, and drive type.
79
80 def __init__(self, make, model, mileage, price, drive_type):
81 # Call the superclass's __init__ method and pass
82 # the required arguments. Note that we also have
83 # to pass self as an argument.
84 Automobile.__init__(self, make, model, mileage, price)
85
86 # Initialize the __drive_type attribute.
87 self.__drive_type = drive_type
88
89 # The set_drive_type method is the mutator for the
90 # __drive_type attribute.
91
92 def set_drive_type(self, drive_type):
93 self.__drive = drive_type
94
95 # The get_drive_type method is the accessor for the
96 # __drive_type attribute.
97
98 def get_drive_type(self):
99 return self.__drive_type

100

490 Chapter 12 Inheritance

The Truck class’s __init__ method begins in line 80. Notice that it takes arguments for
the truck’s make, model, mileage, price, and drive type. Just as the Car class did, the Truck
class calls the Automobile class’s __init__ method (in line 84) passing the make, model,
mileage, and price as arguments. Line 87 creates the __drive_type attribute, initializing
it to the value of the drive_type parameter.

The set_drive_type method in lines 92 through 93 is the mutator for the __drive_type
attribute, and the get_drive_type method in lines 98 through 99 is the accessor for the
attribute.

Now let’s look at the SUV class, which also inherits from the Automobile class. The code
for the SUV class, which is also in the vehicles module, is shown in Program 12-5.

Program 12-5 (Lines 101 through 128 of vehicles.py)

101 # The SUV class represents a sport utility vehicle. It
102 # is a subclass of the Automobile class.
103
104 class SUV(Automobile):
105 # The __init__ method accepts arguments for the
106 # SUV's make, model, mileage, price, and passenger
107 # capacity.
108
109 def __init__(self, make, model, mileage, price, pass_cap):
110 # Call the superclass's __init__ method and pass
111 # the required arguments. Note that we also have
112 # to pass self as an argument.
113 Automobile.__init__(self, make, model, mileage, price)
114
115 # Initialize the __pass_cap attribute.
116 self.__pass_cap = pass_cap
117
118 # The set_pass_cap method is the mutator for the
119 # __pass_cap attribute.
120
121 def set_pass_cap(self, pass_cap):
122 self.__pass_cap = pass_cap
123
124 # The get_pass_cap method is the accessor for the
125 # __pass_cap attribute.
126
127 def get_pass_cap(self):
128 return self.__pass_cap

The SUV class’s __init__ method begins in line 109. It takes arguments for the vehicle’s
make, model, mileage, price, and passenger capacity. Just as the Car and Truck classes did,
the SUV class calls the Automobile class’s __init__ method (in line 113) passing the

12.1 Introduction to Inheritance 491

make, model, mileage, and price as arguments. Line 116 creates the __pass_cap attribute,
initializing it to the value of the pass_cap parameter.

The set_pass_cap method in lines 121 through 122 is the mutator for the __pass_cap
attribute, and the get_pass_cap method in lines 127 through 128 is the accessor for the
attribute.

Program 12-6 demonstrates each of the classes we have discussed so far. It creates a Car
object, a Truck object, and an SUV object.

Program 12-6 (car_truck_suv_demo.py)

1 # This program creates a Car object, a Truck object,
2 # and an SUV object.
3
4 import vehicles
5
6 def main():
7 # Create a Car object for a used 2001 BMW
8 # with 70,000 miles, priced at $15,000, with
9 # 4 doors.

10 car = vehicles.Car('BMW', 2001, 70000, 15000.0, 4)
11
12 # Create a Truck object for a used 2002
13 # Toyota pickup with 40,000 miles, priced
14 # at $12,000, with 4-wheel drive.
15 truck = vehicles.Truck('Toyota', 2002, 40000, 12000.0, '4WD')
16
17 # Create an SUV object for a used 2000
18 # Volvo with 30,000 miles, priced
19 # at $18,500, with 5 passenger capacity.
20 suv = vehicles.SUV('Volvo', 2000, 30000, 18500.0, 5)
21
22 print('USED CAR INVENTORY')
23 print('===================')
24
25 # Display the car's data.
26 print('The following car is in inventory:')
27 print('Make:', car.get_make())
28 print('Model:', car.get_model())
29 print('Mileage:', car.get_mileage())
30 print('Price:', car.get_price())
31 print('Number of doors:', car.get_doors())
32 print()
33
34 # Display the truck's data.
35 print('The following pickup truck is in inventory.')

(program continues)

492 Chapter 12 Inheritance

Program 12-6 (continued)

36 print('Make:', truck.get_make())
37 print('Model:', truck.get_model())
38 print('Mileage:', truck.get_mileage())
39 print('Price:', truck.get_price())
40 print('Drive type:', truck.get_drive_type())
41 print()
42
43 # Display the SUV's data.
44 print('The following SUV is in inventory.')
45 print('Make:', suv.get_make())
46 print('Model:', suv.get_model())
47 print('Mileage:', suv.get_mileage())
48 print('Price:', suv.get_price())
49 print('Passenger Capacity:', suv.get_pass_cap())
50
51 # Call the main function.
52 main()

Program Output

USED CAR INVENTORY
==================
The following car is in inventory:
Make: BMW
Model: 2001
Mileage: 70000
Price: 15000.0
Number of doors: 4

The following pickup truck is in inventory.
Make: Toyota
Model: 2002
Mileage: 40000
Price: 12000.0
Drive type: 4WD

The following SUV is in inventory.
Make: Volvo
Model: 2000
Mileage: 30000
Price: 18500.0
Passenger Capacity: 5

Inheritance in UML Diagrams
You show inheritance in a UML diagram by drawing a line with an open arrowhead from the
subclass to the superclass. (The arrowhead points to the superclass.) Figure 12-2 is a UML
diagram showing the relationship between the Automobile, Car, Truck, and SUV classes.

12.1 Introduction to Inheritance 493

Figure 12-2 UML diagram showing inheritance

Automobile

__make
__model
__mileage
__price

__init__(make, model,
 mileage, price)
set_make(make)
set_model(model)
set_mileage(mileage)
set_price(price)
get_make()
get_model()
get_mileage()
get_price()

Car

__doors

__init__(make, model,
 mileage, price, doors)
set_doors(doors)
get_doors()

Truck

__drive_type

__init__(make, model,
 mileage, price, drive_type)
set_drive_type(drive_type)
get_drive_type()

SUV

__pass_cap

__init__(make, model,
 mileage, price, pass_cap)
set_pass_cap(pass_cap)
get_pass_cap()

In the Spotlight:
Using Inheritance
Bank Financial Systems, Inc. develops financial software for banks and credit unions. The
company is developing a new object-oriented system that manages customer accounts. One
of your tasks is to develop a class that represents a savings account. The data that must be
held by an object of this class is:

• The account number
• The interest rate
• The account balance

You must also develop a class that represents a certificate of deposit (CD) account. The data
that must be held by an object of this class is:

• The account number
• The interest rate
• The account balance
• The account maturity date

494 Chapter 12 Inheritance

As you analyze these requirements, you realize that a CD account is really a specialized ver-
sion of a savings account. The class that represents a CD will hold all of the same data as
the class that represents a savings account, plus an extra attribute for the maturity date.
You decide to design a SavingsAccount class to represent a savings account, and then
design a subclass of SavingsAccount named CD to represent a CD account. You will store
both of these classes in a module named accounts. Program 12-7 shows the code for the
SavingsAccount class.

Program 12-7 (Lines 1 through 37 of accounts.py)

1 # The SavingsAccount class represents a
2 # savings account.
3
4 class SavingsAccount:
5
6 # The __init__ method accepts arguments for the
7 # account number, interest rate, and balance.
8
9 def __init__(self, account_num, int_rate, bal):

10 self.__account_num = account_num
11 self.__interest_rate = int_rate
12 self.__balance = bal
13
14 # The following methods are mutators for the
15 # data attributes.
16
17 def set_account_num(self, account_num):
18 self.__account_num = account_num
19
20 def set_interest_rate(self, int_rate):
21 self.__interest_rate = int_rate
22
23 def set_balance(self, bal):
24 self.__balance = bal
25
26 # The following methods are accessors for the
27 # data attributes.
28
29 def get_account_num(self):
30 return self.__account_num
31
32 def get_interest_rate(self):
33 return self.__interest_rate
34
35 def get_balance(self):
36 return self.__balance
37

12.1 Introduction to Inheritance 495

The class’s __init__ method appears in lines 9 through 12. The __init__ method accepts
arguments for the account number, interest rate, and balance. These arguments are used to
initialize data attributes named __account_num, __interest_rate, and __balance.

The set_account_num, set_interest_rate, and set_balance methods that appear
in lines 17 through 24 are mutators for the data attributes. The get_account_num,
get_interest_rate, and get_balance methods that appear in lines 29 through 36 are
accessors.

The CD class is shown in the next part of Program 12-7.

Program 12-7 (Lines 38 through 65 of accounts.py)

38 # The CD account represents a certificate of
39 # deposit (CD) account. It is a subclass of
40 # the SavingsAccount class.
41
42 class CD(SavingsAccount):
43
44 # The init method accepts arguments for the
45 # account number, interest rate, balance, and
46 # maturity date.
47
48 def __init__(self, account_num, int_rate, bal, mat_date):
49 # Call the superclass __init__ method.
50 SavingsAccount.__init__(self, account_num, int_rate, bal)
51
52 # Initialize the __maturity_date attribute.
53 self.__maturity_date = mat_date
54
55 # The set_maturity_date is a mutator for the
56 # __maturity_date attribute.
57
58 def set_maturity_date(self, mat_date):
59 self.__maturity_date = mat_date
60
61 # The get_maturity_date method is an accessor
62 # for the __maturity_date attribute.
63
64 def get_maturity_date(self):
65 return self.__maturity_date

The CD class’s __init__ method appears in lines 48 through 53. It accepts arguments for
the account number, interest rate, balance, and maturity date. Line 50 calls the
SavingsAccount class’s __init__ method, passing the arguments for the account num-
ber, interest rate, and balance. After the SavingsAccount class’s __init__ method exe-
cutes, the __account_num, __interest_rate, and __balance attributes will be created
and initialized. Then the statement in line 53 creates the __maturity_date attribute.

496 Chapter 12 Inheritance

The set_maturity_date method in lines 58 through 59 is the mutator for the
__maturity_date attribute, and the get_maturity_date method in lines 64 through 65
is the accessor.

To test the classes, we use the code shown in Program 12-8. This program creates an
instance of the SavingsAccount class to represent a savings account, and an instance of
the CD account to represent a certificate of deposit account.

Program 12-8 (account_demo.py)

1 # This program creates an instance of the SavingsAccount
2 # class and an instance of the CD account.
3
4 import accounts
5
6 def main():
7 # Get the account number, interest rate,
8 # and account balance for a savings account.
9 print('Enter the following data for a savings account.')

10 acct_num = input('Account number: ')
11 int_rate = float(input('Interest rate: '))
12 balance = float(input('Balance: '))
13
14 # Create a CD object.
15 savings = accounts.SavingsAccount(acct_num, int_rate, \
16 balance)
17
18 # Get the account number, interest rate,
19 # account balance, and maturity date for a CD.
20 print('Enter the following data for a CD.')
21 acct_num = input('Account number: ')
22 int_rate = float(input('Interest rate: '))
23 balance = float(input('Balance: '))
24 maturity = input('Maturity date: ')
25
26 # Create a CD object.
27 cd = accounts.CD(acct_num, int_rate, balance, maturity)
28
29 # Display the data entered.
30 print('Here is the data you entered:')
31 print()
32 print('Savings Account')
33 print('---------------')
34 print('Account number:', savings.get_account_num())
35 print('Interest rate:', savings.get_interest_rate())
36 print('Balance: $', \
37 format(savings.get_balance(), ',.2f'), \
38 sep='')

12.1 Introduction to Inheritance 497

39 print()
40 print('CD')
41 print('---------------')
42 print('Account number:', cd.get_account_num())
43 print('Interest rate:', cd.get_interest_rate())
44 print('Balance: $', \
45 format(cd.get_balance(), ',.2f'), \
46 sep='')
47 print('Maturity date:', cd.get_maturity_date())
48
49 # Call the main function.
50 main()

Program Output (with input shown in bold)

Enter the following data for a savings account.
Account number: 1234SA e
Interest rate: 3.5 e
Balance: 1000.00 e
Enter the following data for a CD.
Account number: 2345CD e
Interest rate: 5.6 e
Balance: 2500.00 e
Maturity date: 12/12/2014 e
Here is the data you entered:

Savings Account

Account number: 1234SA
Interest rate: 3.5
Balance: $1,000.00

CD

Account number: 2345CD
Interest rate: 5.6
Balance: $2,500.00
Maturity date: 12/12/2014

Checkpoint

12.1 In this section we discussed superclasses and subclasses. Which is the general class
and which is the specialized class?

12.2 What does it mean to say there is an “is a” relationship between two objects?

12.3 What does a subclass inherit from its superclass?

12.4 Look at the following code, which is the first line of a class definition. What is the
name of the superclass? What is the name of the subclass?

class Canary(Bird):

498 Chapter 12 Inheritance

12.2 Polymorphism

CONCEPT: Polymorphism allows subclasses to have methods with the same names
as methods in their superclasses. It gives the ability for a program to call
the correct method depending on the type of object that is used to call it.

The term polymorphism refers to an object’s ability to take different forms. It is a power-
ful feature of object-oriented programming. In this section, we will look at two essential
ingredients of polymorphic behavior:

1. The ability to define a method in a superclass, and then define a method with the same
name in a subclass. When a subclass method has the same name as a superclass
method, it is often said that the subclass method overrides the superclass method.

2. The ability to call the correct version of an overridden method, depending on the type
of object that is used to call it. If a subclass object is used to call an overridden
method, then the subclass’s version of the method is the one that will execute. If a
superclass object is used to call an overridden method, then the superclass’s version of
the method is the one that will execute.

Actually, you’ve already seen method overriding at work. Each subclass that we have exam-
ined in this chapter has a method named __init__ that overrides the superclass’s __init__
method. When an instance of the subclass is created, it is the subclass’s __init__ method that
automatically gets called.

Method overriding works for other class methods too. Perhaps the best way to describe
polymorphism is to demonstrate it, so let’s look at a simple example. Program 12-9 shows
the code for a class named Mammal, which is in a module named animals.

Program 12-9 (Lines 1 through 22 of animals.py)

1 # The Mammal class represents a generic mammal.
2
3 class Mammal:
4
5 # The __init__ method accepts an argument for
6 # the mammal's species.
7
8 def __init__(self, species):
9 self.__species = species

10
11 # The show_species method displays a message
12 # indicating the mammal's species.
13
14 def show_species(self):
15 print('I am a', self.__species)
16
17 # The make_sound method is the mammal's
18 # way of making a generic sound.

12.2 Polymorphism 499

19
20 def make_sound(self):
21 print('Grrrrr')
22

The Mammal class has three methods: __init__, show_species and make_sound. Here is an
example of code that creates an instance of the class and calls the uses these methods:

import animals
mammal = animals.Mammal('regular mammal')
mammal.show_species()
mammal.make_sound()

This code will display the following:

I am a regular mammal
Grrrrr

The next part of Program 12-9 shows the Dog class. The Dog class, which is also in the ani-
mals module, is a subclass of the Mammal class.

Program 12-9 (Lines 23 through 38 of animals.py)

23 # The Dog class is a subclass of the Mammal class.
24
25 class Dog(Mammal):
26
27 # The __init__ method calls the superclass's
28 # __init__ method passing 'Dog' as the species.
29
30 def __init__(self):
31 Mammal.__init__(self, 'Dog')
32
33 # The make_sound method overrides the superclass's
34 # make_sound method.
35
36 def make_sound(self):
37 print('Woof! Woof!')
38

Even though the Dog class inherits the __init__ and make_sound methods that are in the
Mammal class, those methods are not adequate for the Dog class. So, the Dog class has its
own __init__ and make_sound methods, which perform actions that are more appropri-
ate for a dog. We say that the __init__ and make_sound methods in the Dog class over-
ride the __init__ and make_sound methods in the Mammal class. Here is an example of
code that creates an instance of the Dog class and calls the methods:

import animals
dog = animals.Dog()

500 Chapter 12 Inheritance

dog.show_species()
dog.make_sound()

This code will display the following:

I am a Dog
Woof! Woof!

When we use a Dog object to call the show_species and make_sound methods, the ver-
sions of these methods that are in the Dog class are the ones that execute. Next, look at
Program 12-10, which shows the Cat class. The Cat class, which is also in the animals
module, is another subclass of the Mammal class.

Program 12-9 (Lines 39 through 53 of animals.py)

39 # The Cat class is a subclass of the Mammal class.
40
41 class Cat(Mammal):
42
43 # The __init__ method calls the superclass's
44 # __init__ method passing 'Cat' as the species.
45
46 def __init__(self):
47 Mammal.__init__(self, 'Cat')
48
49 # The make_sound method overrides the superclass's
50 # make_sound method.
51
52 def make_sound(self):
53 print('Meow')

The Cat class also overrides the Mammal class’s __init__ and make_sound methods. Here
is an example of code that creates an instance of the Cat class and calls these methods:

import animals
cat = animals.Cat()
cat.show_species()
cat.make_sound()

This code will display the following:

I am a Cat
Meow

When we use a Cat object to call the show_species and make_sound methods, the ver-
sions of these methods that are in the Cat class are the ones that execute.

12.2 Polymorphism 501

The isinstance Function
Polymorphism gives us a great deal of flexibility when designing programs. For example,
look at the following function:

def show_mammal_info(creature):
creature.show_species()
creature.make_sound()

We can pass any object as an argument to this function, and as long as it has a
show_species method and a make_sound method, the function will call those methods. In
essence, we can pass any object that “is a” Mammal (or a subclass of Mammal) to the func-
tion. Program 12-10 demonstrates.

Program 12-10 (polymorphism_demo.py)

1 # This program demonstrates polymorphism.
2
3 import animals
4
5 def main():
6 # Create a Mammal object, a Dog object, and
7 # a Cat object.
8 mammal = animals.Mammal('regular animal')
9 dog = animals.Dog()

10 cat = animals.Cat()
11
12 # Display information about each one.
13 print('Here are some animals and')
14 print('the sounds they make.')
15 print('--------------------------')
16 show_mammal_info(mammal)
17 print()
18 show_mammal_info(dog)
19 print()
20 show_mammal_info(cat)
21
22 # The show_mammal_info function accepts an object
23 # as an argument, and calls its show_species
24 # and make_sound methods.
25
26 def show_mammal_info(creature):
27 creature.show_species()
28 creature.make_sound()
29
30 # Call the main function.
31 main()

(program output continues)

502 Chapter 12 Inheritance

Program Output (continued)

Here are some animals and
the sounds they make.

I am a regular animal
Grrrrr

I am a Dog
Woof! Woof!

I am a Cat
Meow

But what happens if we pass an object that is not a Mammal, and not of a subclass of Mammal
to the function? For example, what will happen when Program 12-11 runs?

Program 12-11 (wrong_type.py)

1 def main():
2 # Pass a string to show_mammal_info...
3 show_mammal_info('I am a string')
4
5 # The show_mammal_info function accepts an object
6 # as an argument, and calls its show_species
7 # and make_sound methods.
8
9 def show_mammal_info(creature):

10 creature.show_species()
11 creature.make_sound()
12
13 # Call the main function.
14 main()

In line 3 we call the show_mammal_info function passing a string as an argument. When
the interpreter attempts to execute line 10, however, an AttributeError exception will be
raised because strings do not have a method named show_species.

We can prevent this exception from occurring by using the built-in function isinstance.
You can use the isinstance function to determine whether an object is an instance of a
specific class, or a subclass of that class. Here is the general format of the function call:

isinstance(object, ClassName)

In the general format, object is a reference to an object and ClassName is the name
of a class. If the object referenced by object is an instance of ClassName or is an instance
of a subclass of ClassName, the function returns true. Otherwise it returns false. Program
12-12 shows how we can use it in the show_mammal_info function.

12.2 Polymorphism 503

Program 12-12 (polymorphism_demo2.py)

1 # This program demonstrates polymorphism.
2
3 import animals
4
5 def main():
6 # Create an Mammal object, a Dog object, and
7 # a Cat object.
8 mammal = animals.Mammal('regular animal')
9 dog = animals.Dog()

10 cat = animals.Cat()
11
12 # Display information about each one.
13 print('Here are some animals and')
14 print('the sounds they make.')
15 print('--------------------------')
16 show_mammal_info(mammal)
17 print()
18 show_mammal_info(dog)
19 print()
20 show_mammal_info(cat)
21 print()
22 show_mammal_info('I am a string')
23
24 # The show_mammal_info function accepts an object
25 # as an argument, and calls its show_species
26 # and make_sound methods.
27
28 def show_mammal_info(creature):
29 if isinstance(creature, animals.Mammal):
30 creature.show_species()
31 creature.make_sound()
32 else:
33 print('That is not a Mammal!')
34
35 # Call the main function.
36 main()

Program Output

Here are some animals and
the sounds they make.

I am a regular animal
Grrrrr

(program output continues)

504 Chapter 12 Inheritance

Program Output (continued)

I am a Dog
Woof! Woof!

I am a Cat
Meow

That is not a Mammal!

In lines 16, 18, and 20 we call the show_mammal_info function, passing references to a
Mammal object, a Dog object, and a Cat object. In line 22, however, we call the function and
pass a string as an argument. Inside the show_mammal_info function, the if statement in
line 29 calls the isinstance function to determine whether the argument is an instance of
Mammal (or a subclass). If it is not, an error message is displayed.

Checkpoint

12.5 Look at the following class definitions:

class Vegetable:
def __init__(self, vegtype):

self.__vegtype = vegtype

def message(self):
print("I'm a vegetable.")

class Potato(Vegetable):
def __init__(self):

Vegetable.__init__(self, 'potato')

def message(self):
print("I'm a potato.")

Given these class definitions, what will the following statements display?

v = Vegetable('veggie')
p = Potato()
v.message()
p.message()

Review Questions
Multiple Choice

1. In an inheritance relationship, the __________ is the general class.
a. subclass
b. superclass
c. slave class
d. child class

2. In an inheritance relationship, the __________ is the specialized class.
a. superclass
b. master class
c. subclass
d. parent class

3. Suppose a program uses two classes: Airplane and JumboJet. Which of these would
most likely be the subclass?
a. Airplane
b. JumboJet
c. Both
d. Neither

4. This characteristic of object-oriented programming allows the correct version of an
overridden method to be called when an instance of a subclass is used to call it.
a. polymorphism
b. inheritance
c. generalization
d. specialization

5. You can use this to determine whether an object is an instance of a class.
a. The in operator
b. The is_object_of function
c. The isinstance function
d. The error messages that are displayed when a program crashes

True or False

1. Polymorphism allows you to write methods in a subclass that have the same name as
methods in the superclass.

2. It is not possible to call a superclass’s __init__ method from a subclass’s __init__
method.

3. A subclass can have a method with the same name as a method in the superclass.

4. Only the __init__ method can be overridden.

5. You cannot use the isinstance function to determine whether an object is an instance
of a subclass of a class.

Short Answer

1. What does a subclass inherit from its superclass?

2. Look at the following class definition. What is the name of the superclass? What is the
name of the subclass?

class Tiger(Felis):

3. What is an overridden method?

Algorithm Workbench

1. Write the first line of the definition for a Poodle class. The class should extend the Dog
class.

Review Questions 505

506 Chapter 12 Inheritance

2. Look at the following class definitions:

class Plant:
def __init__(self, plant_type):

self.__plant_type = plant_type

def message(self):
print("I'm a plant.")

class Tree(Plant):
def __init__(self):

Plant.__init__(self, 'tree')

def message(self):
print("I'm a tree.")

Given these class definitions, what will the following statements display?

p = Plant('sapling')
t = Tree()
p.message()
t.message()

3. Look at the following class definition:

class Beverage:
def __init__(self, bev_name):

self.__bev_name = bev_name

Write the code for a class named Cola that is a subclass of the Beverage class. The
Cola class’s __init__ method should call the Beverage class’s __init__ method,
passing ‘cola’ as an argument.

Programming Exercises
1. Employee and ProductionWorker Classes

Write an Employee class that keeps data attributes for the following pieces of information:

• Employee name
• Employee number

Next, write a class named ProductionWorker that is a subclass of the Employee class. The
ProductionWorker class should keep data attributes for the following information:

• Shift number (an integer, such as 1, 2, or 3)
• Hourly pay rate

The workday is divided into two shifts: day and night. The shift attribute will hold an inte-
ger value representing the shift that the employee works. The day shift is shift 1 and the
night shift is shift 2. Write the appropriate accessor and mutator methods for each class.

Once you have written the classes, write a program that creates an object of the
ProductionWorker class and prompts the user to enter data for each of the object’s data
attributes. Store the data in the object and then use the object’s accessor methods to retrieve
it and display it on the screen.

2. ShiftSupervisor Class

In a particular factory, a shift supervisor is a salaried employee who supervises a shift. In
addition to a salary, the shift supervisor earns a yearly bonus when his or her shift meets
production goals. Write a ShiftSupervisor class that is a subclass of the Employee class
you created in Programming Exercise 1. The ShiftSupervisor class should keep a data
attribute for the annual salary and a data attribute for the annual production bonus that a
shift supervisor has earned. Demonstrate the class by writing a program that uses a
ShiftSupervisor object.

3. Person and Customer Classes

Write a class named Person with data attributes for a person’s name, address, and tele-
phone number. Next, write a class named Customer that is a subclass of the Person class.
The Customer class should have a data attribute for a customer number and a Boolean data
attribute indicating whether the customer wishes to be on a mailing list. Demonstrate an
instance of the Customer class in a simple program.

Programming Exercises 507

VideoNote
The Person and
Customer Classes

This page intentionally left blank

13.1 Introduction to Recursion

CONCEPT: A recursive function is a function that calls itself.

You have seen instances of functions calling other functions. In a program, the main func-
tion might call function A, which then might call function B. It’s also possible for a function
to call itself. A function that calls itself is known as a recursive function. For example, look
at the message function shown in Program 13-1.

Program 13-1 (endless_recursion.py)

1 # This program has a recursive function.
2
3 def main():
4 message()
5
6 def message():
7 print('This is a recursive function.')
8 message()
9

10 # Call the main function.
11 main()

Recursion13
TOPICS

13.1 Introduction to Recursion
13.2 Problem Solving with Recursion

13.3 Examples of Recursive Algorithms

C
H

A
P

T
E

R

509

(program output continues)

510 Chapter 13 Recursion

Program Output (continued)

This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.

. . . and this output repeats forever!

The message function displays the string ‘This is a recursive function’ and then calls itself.
Each time it calls itself, the cycle is repeated. Can you see a problem with the function?
There’s no way to stop the recursive calls. This function is like an infinite loop because there
is no code to stop it from repeating. If you run this program, you will have to press Ctrl+C
on the keyboard to interrupt it’s execution.

Like a loop, a recursive function must have some way to control the number of times it
repeats. The code in Program 13-2 shows a modified version of the message function. In
this program, the message function receives an argument that specifies the number of times
the function should display the message.

Program 13-2 (recursive.py)

1 # This program has a recursive function.
2
3 def main():
4 # By passing the argument 5 to the message
5 # function we are telling it to display the
6 # message five times.
7 message(5)
8
9 def message(times):

10 if times > 0:
11 print('This is a recursive function.')
12 message(times - 1)
13
14 # Call the main function.
15 main()

Program Output

This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.
This is a recursive function.

The message function in this program contains an if statement in line 10 that controls the
repetition. As long as the times parameter is greater than zero, the message ‘This is a recur-
sive function’ is displayed, and then the function calls itself again, but with a smaller argument.

13.1 Introduction to Recursion 511

In line 7 the main function calls the message function passing the argument 5. The first
time the function is called the if statement displays the message and then calls itself with
4 as the argument. Figure 13-1 illustrates this.

The diagram shown in Figure 13-1 illustrates two separate calls of the message function.
Each time the function is called, a new instance of the times parameter is created in mem-
ory. The first time the function is called, the times parameter is set to 5. When the func-
tion calls itself, a new instance of the times parameter is created, and the value 4 is passed
into it. This cycle repeats until finally, zero is passed as an argument to the function. This
is illustrated in Figure 13-2.

Figure 13-1 First two calls of the function

First call of the function

Value of times: 5

Second call of the function

Value of times: 4

Figure 13-2 Six calls to the message function

First call of the function

Value of times: 5

Second call of the function

Value of times: 4

Third call of the function

Value of times: 3

Fourth call of the function

Value of times: 2

Fifth call of the function

Value of times: 1

Sixth call of the function

Value of times: 0

The function is first called
from the main function.

The second through sixth
calls are recursive.

Figure 13-3 Control returns to the point after the recursive function call

Recursive function call

Control returns here from the recursive call.
There are no more statements to execute
in this function, so the function returns.

def message(times):
 if times > 0:
 print('This is a recursive function.')
 message(times - 1)

512 Chapter 13 Recursion

Because there are no more statements to be executed after the function call, the fifth
instance of the function returns control of the program back to the fourth instance. This
repeats until all instances of the function return.

13.2 Problem Solving with Recursion

CONCEPT: A problem can be solved with recursion if it can be broken down into
smaller problems that are identical in structure to the overall problem.

The code shown in Program 13-2 demonstrates the mechanics of a recursive function.
Recursion can be a powerful tool for solving repetitive problems and is commonly studied
in upper-level computer science courses. It may not yet be clear to you how to use recur-
sion to solve a problem.

First, note that recursion is never required to solve a problem. Any problem that can be
solved recursively can also be solved with a loop. In fact, recursive algorithms are usually
less efficient than iterative algorithms. This is because the process of calling a function
requires several actions to be performed by the computer. These actions include allocating
memory for parameters and local variables, and storing the address of the program loca-
tion where control returns after the function terminates. These actions, which are some-
times referred to as overhead, take place with each function call. Such overhead is not
necessary with a loop.

Some repetitive problems, however, are more easily solved with recursion than with
a loop. Where a loop might result in faster execution time, the programmer might be

As you can see in the figure, the function is called six times. The first time it is called from
the main function, and the other five times it calls itself. The number of times that a func-
tion calls itself is known as the depth of recursion. In this example, the depth of recur-
sion is five. When the function reaches its sixth call, the times parameter is set to 0.
At that point, the if statement’s conditional expression is false, so the function returns.
Control of the program returns from the sixth instance of the function to the point in the
fifth instance directly after the recursive function call. This is illustrated in Figure 13-3.

13.2 Problem Solving with Recursion 513

able to design a recursive algorithm faster. In general, a recursive function works as
follows:

• If the problem can be solved now, without recursion, then the function solves it and
returns

• If the problem cannot be solved now, then the function reduces it to a smaller but sim-
ilar problem and calls itself to solve the smaller problem

In order to apply this approach, first, we identify at least one case in which the problem can
be solved without recursion. This is known as the base case. Second, we determine a way
to solve the problem in all other circumstances using recursion. This is called the recursive
case. In the recursive case, we must always reduce the problem to a smaller version of the
original problem. By reducing the problem with each recursive call, the base case will even-
tually be reached and the recursion will stop.

Using Recursion to Calculate
the Factorial of a Number
Let’s take an example from mathematics to examine an application of recursive functions.
In mathematics, the notation n! represents the factorial of the number n. The factorial of a
nonnegative number can be defined by the following rules:

If n � 0 then n! � 1
If n � 0 then n! � 1 � 2 � 3 � . . . � n

Let’s replace the notation n! with factorial(n), which looks a bit more like computer code,
and rewrite these rules as follows:

If n � 0 then factorial(n) � 1
If n � 0 then factorial(n) � 1 � 2 � 3 � . . . � n

These rules state that when n is 0, its factorial is 1. When n is greater than 0, its factorial
is the product of all the positive integers from 1 up to n. For instance, factorial(6) is calcu-
lated as 1 � 2 � 3 � 4 � 5 � 6.

When designing a recursive algorithm to calculate the factorial of any number, first we iden-
tify the base case, which is the part of the calculation that we can solve without recursion.
That is the case where n is equal to 0 as follows:

If n � 0 then factorial(n) � 1

This tells how to solve the problem when n is equal to 0, but what do we do when n is
greater than 0? That is the recursive case, or the part of the problem that we use recursion
to solve. This is how we express it:

If n � 0 then factorial(n) � n � factorial(n � 1)

This states that if n is greater than 0, the factorial of n is n times the factorial of n � 1.
Notice how the recursive call works on a reduced version of the problem, n � 1. So, our
recursive rule for calculating the factorial of a number might look like this:

If n � 0 then factorial(n) � 1
If n � 0 then factorial(n) � n � factorial(n � 1)

514 Chapter 13 Recursion

The code in Program 13-3 shows how we might design a factorial function in a
program.

Program 13-3

1 # This program uses recursion to calculate
2 # the factorial of a number.
3
4 def main():
5 # Get a number from the user.
6 number = int(input('Enter a nonnegative integer: '))
7
8 # Get the factorial of the number.
9 fact = factorial(number)

10
11 # Display the factorial.
12 print('The factorial of', number, 'is', fact)
13
14 # The factorial function uses recursion to
15 # calculate the factorial of its argument,
16 # which is assumed to be nonnegative.
17 def factorial(num):
18 if num == 0:
19 return 1
20 else:
21 return num * factorial(num - 1)
22
23 # Call the main function.
24 main()

Program Output (with input shown in bold)

Enter a nonnegative integer: 4 e

The factorial of 4 is 24

In the sample run of the program, the factorial function is called with the argument 4
passed to num. Because num is not equal to 0, the if statement’s else clause executes the
following statement:

return num * factorial(num - 1)

Although this is a return statement, it does not immediately return. Before the return
value can be determined, the value of factorial(num - 1) must be determined. The
factorial function is called recursively until the fifth call, in which the num parameter will
be set to zero. Figure 13-4 illustrates the value of num and the return value during each call
of the function.

13.2 Problem Solving with Recursion 515

Figure 13-4 The value of num and the return value during each call of the function

First call of the function

Value of num: 4

The function is first called
from the main function.

The second through fifth
calls are recursive.

Return value: 24

Second call of the function

Value of num: 3

Return value: 6

Third call of the function

Value of num: 2

Return value: 2

Fourth call of the function

Value of num: 1

Return value: 1

Fifth call of the function

Value of num: 0

Return value: 1

The figure illustrates why a recursive algorithm must reduce the problem with each
recursive call. Eventually, the recursion has to stop in order for a solution to be
reached.

If each recursive call works on a smaller version of the problem, then the recursive calls
work toward the base case. The base case does not require recursion, so it stops the chain
of recursive calls.

Usually, a problem is reduced by making the value of one or more parameters smaller with
each recursive call. In our factorial function, the value of the parameter num gets closer to
0 with each recursive call. When the parameter reaches 0, the function returns a value with-
out making another recursive call.

516 Chapter 13 Recursion

Direct and Indirect Recursion
The examples we have discussed so far show recursive functions or functions that directly
call themselves. This is known as direct recursion. There is also the possibility of creat-
ing indirect recursion in a program. This occurs when function A calls function B, which
in turn calls function A. There can even be several functions involved in the recursion. For
example, function A could call function B, which could call function C, which calls func-
tion A.

Checkpoint

13.1 It is said that a recursive algorithm has more overhead than an iterative algorithm.
What does this mean?

13.2 What is a base case?

13.3 What is a recursive case?

13.4 What causes a recursive algorithm to stop calling itself?

13.5 What is direct recursion? What is indirect recursion?

13.3 Examples of Recursive Algorithms

Summing a Range of List Elements with Recursion
In this example, we look at a function named range_sum that uses recursion to sum a
range of items in a list. The function takes the following arguments: a list that contains
the range of elements to be summed, an integer specifying the index of the starting item
in the range, and an integer specifying the index of the ending item in the range. Here is
an example of how the function might be used:

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
my_sum = range_sum(numbers, 3, 7)
print(my_sum)

The second statement in this code specifies that the range_sum function should return the
sum of the items at indexes 3 through 7 in the numbers list. The return value, which in this
case would be 30, is assigned to the my_sum variable. Here is the definition of the
range_sum function:

def range_sum(num_list, start, end):
if start > end:

return 0
else:

return num_list[start] + range_sum(num_list, start + 1, end)

This function’s base case is when the start parameter is greater than the end parameter. If
this is true, the function returns the value 0. Otherwise, the function executes the follow-
ing statement:

return num_list[start] + range_sum(num_list, start + 1, end)

13.3 Examples of Recursive Algorithms 517

This statement returns the sum of num_list[start] plus the return value of a recursive
call. Notice that in the recursive call, the starting item in the range is start + 1. In essence,
this statement says “return the value of the first item in the range plus the sum of the rest
of the items in the range.” Program 13-4 demonstrates the function.

Program 13-4

1 # This program demonstrates the range_sum function.
2
3 def main():
4 # Create a list of numbers.
5 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]
6
7 # Get the sum of the items at indexes 2
8 # through 5.
9 my_sum = range_sum(numbers, 2, 5)

10
11 # Display the sum.
12 print('The sum of items 2 through 5 is', my_sum)
13
14 # The range_sum function returns the sum of a specified
15 # range of items in num_list. The start parameter
16 # specifies the index of the starting item. The end
17 # parameter specifies the index of the ending item.
18 def range_sum(num_list, start, end):
19 if start > end:
20 return 0
21 else:
22 return num_list[start] + range_sum(num_list, start + 1, end)
23
24 # Call the main function.
25 main()

Program Output

The sum of elements 2 through 5 is 18

The Fibonacci Series
Some mathematical problems are designed to be solved recursively. One well-known
example is the calculation of Fibonacci numbers. The Fibonacci numbers, named after
the Italian mathematician Leonardo Fibonacci (born circa 1170), are the following
sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

Notice that after the second number, each number in the series is the sum of the two previ-
ous numbers. The Fibonacci series can be defined as follows:

518 Chapter 13 Recursion

If n � 0 then Fib(n) � 0
If n � 1 then Fib(n) � 1
If n � 1 then Fib(n) � Fib(n � 1) � Fib(n � 2)

A recursive function to calculate the nth number in the Fibonacci series is shown here:

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n - 1) + fib(n - 2)

Notice that this function actually has two base cases: when n is equal to 0, and when n is
equal to 1. In either case, the function returns a value without making a recursive call. The
code in Program 13-5 demonstrates this function by displaying the first 10 numbers in the
Fibonacci series.

Program 13-5 (fibonacci.py)

1 # This program uses recursion to print numbers
2 # from the Fibonacci series.
3
4 def main():
5 print('The first 10 numbers in the')
6 print('Fibonacci series are:')
7
8 for number in range(1, 11):
9 print(fib(number))

10
11 # The fib function returns the nth number
12 # in the Fibonacci series.
13 def fib(n):
14 if n == 0:
15 return 0
16 elif n == 1:
17 return 1
18 else:
19 return fib(n - 1) + fib(n - 2)
20
21 # Call the main function.
22 main()

Program Output

The first 10 numbers in the
Fibonacci series are:
0

13.3 Examples of Recursive Algorithms 519

1
1
2
3
5
8
13
21
34

Finding the Greatest Common Divisor
Our next example of recursion is the calculation of the greatest common divisor (GCD) of
two numbers. The GCD of two positive integers x and y is determined as follows:

If x can be evenly divided by y, then gcd(x, y) � y
Otherwise, gcd(x, y) � gcd(y, remainder of x�y)

This definition states that the GCD of x and y is y if x�y has no remainder. This is the base case.
Otherwise, the answer is the GCD of y and the remainder of x�y. The code in Program 13-6
shows a recursive method for calculating the GCD.

Program 13-6 (gcd.py)

1 # This program uses recursion to find the GCD
2 # of two numbers.
3
4 def main():
5 # Get two numbers.
6 num1 = int(input('Enter an integer: '))
7 num2 = int(input('Enter another integer: '))
8
9 # Display the GCD.

10 print('The greatest common divisor of')
11 print('the two numbers is', gcd(num1, num2))
12
13 # The gcd function returns the greatest common
14 # divisor of two numbers.
15 def gcd(x, y):
16 if x % y == 0:
17 return y
18 else:
19 return gcd(x, x % y)
20
21 # Call the main function.
22 main()

(program output continues)

520 Chapter 13 Recursion

Program 13-6 (continued)

Program Output (with input shown in bold)

Enter an integer: 49 e

Enter another integer: 28 e

The greatest common divisor of
these two numbers is 7

The Towers of Hanoi
The Towers of Hanoi is a mathematical game that is often used in computer science to illus-
trate the power of recursion. The game uses three pegs and a set of discs with holes through
their centers. The discs are stacked on one of the pegs as shown in Figure 13-5.

Figure 13-5 The pegs and discs in the Tower of Hanoi game

Notice that the discs are stacked on the leftmost peg, in order of size with the largest disc
at the bottom. The game is based on a legend where a group of monks in a temple in Hanoi
have a similar set of pegs with 64 discs. The job of the monks is to move the discs from the
first peg to the third peg. The middle peg can be used as a temporary holder. Furthermore,
the monks must follow these rules while moving the discs:

• Only one disk may be moved at a time
• A disk cannot be placed on top of a smaller disc
• All discs must be stored on a peg except while being moved

According to the legend, when the monks have moved all of the discs from the first peg to
the last peg, the world will come to an end.1

To play the game, you must move all of the discs from the first peg to the third peg,
following the same rules as the monks. Let’s look at some example solutions to this game,
for different numbers of discs. If you only have one disc, the solution to the game is

1 In case you’re worried about the monks finishing their job and causing the world to end anytime soon, you can
relax. If the monks move the discs at a rate of 1 per second, it will take them approximately 585 billion years to
move all 64 discs!

13.3 Examples of Recursive Algorithms 521

simple: move the disc from peg 1 to peg 3. If you have two discs, the solution requires
three moves:

• Move disc 1 to peg 2
• Move disc 2 to peg 3
• Move disc 1 to peg 3

Notice that this approach uses peg 2 as a temporary location. The complexity of the moves
continues to increase as the number of discs increases. To move three discs requires the
seven moves shown in Figure 13-6.

Figure 13-6 Steps for moving three pegs

First move: Move disc 1 to peg 3.Original setup.

Second move: Move disc 2 to peg 2. Third move: Move disc 1 to peg 2.

Fourth move: Move disc 3 to peg 3. Fifth move: Move disc 1 to peg 1.

Sixth move: Move disc 2 to peg 3. Seventh move: Move disc 1 to peg 3.

0 1

2 3

4 5

6 7

The following statement describes the overall solution to the problem:

Move n discs from peg 1 to peg 3 using peg 2 as a temporary peg.

The following summary describes a recursive algorithm that simulates the solution to the
game. Notice that in this algorithm we use the variables A, B, and C to hold peg numbers.

522 Chapter 13 Recursion

To move n discs from peg A to peg C, using peg B as a temporary peg, do the following:
If n � 0:

Move n � 1 discs from peg A to peg B, using peg C as a temporary peg.
Move the remaining disc from peg A to peg C.
Move n � 1 discs from peg B to peg C, using peg A as a temporary peg.

The base case for the algorithm is reached when there are no more discs to move. The fol-
lowing code is for a function that implements this algorithm. Note that the function does
not actually move anything, but displays instructions indicating all of the disc moves to
make.

def move_discs(num, from_peg, to_peg, temp_peg):
if num > 0:

move_discs(num - 1, from_peg, temp_peg, to_peg)
print('Move a disc from peg', from_peg, 'to peg', to_peg)
move_discs(num - 1, temp_peg, to_peg, from_peg)

This function accepts arguments into the following parameters:

num The number of discs to move.
from_peg The peg to move the discs from.
to_peg The peg to move the discs to.
temp_peg The peg to use as a temporary peg.

If num is greater than 0, then there are discs to move. The first recursive call is as follows:

move_discs(num - 1, from_peg, temp_peg, to_peg)

This statement is an instruction to move all but one disc from from_peg to temp_peg, using
to_peg as a temporary peg. The next statement is as follows:

print('Move a disc from peg', from_peg, 'to peg', to_peg)

This simply displays a message indicating that a disc should be moved from from_peg to
to_peg. Next, another recursive call is executed as follows:

move-discs(num - 1, temp_peg, to_peg, from_peg)

This statement is an instruction to move all but one disc from temp_peg to to_peg, using
from_peg as a temporary peg. The code in Program 13-7 demonstrates the function by dis-
playing a solution for the Tower of Hanoi game.

Program 13-7 (towers_of_hanoi.py)

1 # This program simulates the Towers of Hanoi game.
2
3 def main():
4 # Set up some initial values.
5 num_discs = 3
6 from_peg = 1
7 to_peg = 3
8 temp_peg =2

13.3 Examples of Recursive Algorithms 523

9
10 # Play the game.
11 move_discs(num_discs, from_peg, to_peg, temp_peg)
12 print('All the pegs are moved!')
13
14 # The moveDiscs function displays a disc move in
15 # the Towers of Hanoi game.
16 # The parameters are:
17 # num: The number of discs to move.
18 # from_peg: The peg to move from.
19 # to_peg: The peg to move to.
20 # temp_peg: The temporary peg.
21 def move_discs(num, from_peg, to_peg, temp_peg):
22 if num > 0:
23 move_discs(num - 1, from_peg, temp_peg, to_peg)
24 print('Move a disc from peg', from_peg, 'to peg', to_peg)
25 move_discs(num - 1, temp_peg, to_peg, from_peg)
26
27 # Call the main function.
28 main()

Program Output

Move a disc from peg 1 to peg 3
Move a disc from peg 1 to peg 2
Move a disc from peg 3 to peg 2
Move a disc from peg 1 to peg 3
Move a disc from peg 2 to peg 1
Move a disc from peg 2 to peg 3
Move a disc from peg 1 to peg 3
All the pegs are moved!

Recursion versus Looping
Any algorithm that can be coded with recursion can also be coded with a loop. Both
approaches achieve repetition, but which is best to use?

There are several reasons not to use recursion. Recursive function calls are certainly less
efficient than loops. Each time a function is called, the system incurs overhead that is not
necessary with a loop. Also, in many cases, a solution using a loop is more evident than a
recursive solution. In fact, the majority of repetitive programming tasks are best done with
loops.

Some problems, however, are more easily solved with recursion than with a loop. For exam-
ple, the mathematical definition of the GCD formula is well suited to a recursive approach.
If a recursive solution is evident for a particular problem, and the recursive algorithm does
not slow system performance an intolerable amount, then recursion would be a good design
choice. If a problem is more easily solved with a loop, however, you should take that
approach.

524 Chapter 13 Recursion

Review Questions
Multiple Choice

1. A recursive function _______________.
a. calls a different function
b. abnormally halts the program
c. calls itself
d. can only be called once

2. A function is called once from a program’s main function, and then it calls itself four
times. The depth of recursion is _______________.
a. one
b. four
c. five
d. nine

3. The part of a problem that can be solved without recursion is the _______________
case.
a. base
b. solvable
c. known
d. iterative

4. The part of a problem that is solved with recursion is the _______________case.
a. base
b. iterative
c. unknown
d. recursion

5. When a function explicitly calls itself it is called _______________ recursion.
a. explicit
b. modal
c. direct
d. indirect

6. When function A calls function B, which calls function A it is called _______________
recursion.
a. implicit
b. modal
c. direct
d. indirect

7. Any problem that can be solved recursively can also be solved with a _______________.
a. decision structure
b. loop
c. sequence structure
d. case structure

8. Actions taken by the computer when a function is called, such as allocating memory
for parameters and local variables, are referred to as _______________.
a. overhead
b. set up

Review Questions 525

c. clean up
d. synchronization

9. A recursive algorithm must _______________ in the recursive case.
a. solve the problem without recursion
b. reduce the problem to a smaller version of the original problem
c. acknowledge that an error has occurred and abort the program
d. enlarge the problem to a larger version of the original problem

10. A recursive algorithm must _______________ in the base case.
a. solve the problem without recursion
b. reduce the problem to a smaller version of the original problem
c. acknowledge that an error has occurred and abort the program
d. enlarge the problem to a larger version of the original problem

True or False

1. An algorithm that uses a loop will usually run faster than an equivalent recursive
algorithm.

2. Some problems can be solved through recursion only.

3. It is not necessary to have a base case in all recursive algorithms.

4. In the base case, a recursive method calls itself with a smaller version of the original problem.

Short Answer

1. In Program 13-2, presented earlier in this chapter, what is the base case of the message
function?

2. In this chapter, the rules given for calculating the factorial of a number are as follows:

If n � 0 then factorial(n) � 1
If n � 0 then factorial(n) � n � factorial(n � 1)

If you were designing a function from these rules, what would the base case be? What
would the recursive case be?

3. Is recursion ever required to solve a problem? What other approach can you use to
solve a problem that is repetitive in nature?

4. When recursion is used to solve a problem, why must the recursive function call itself
to solve a smaller version of the original problem?

5. How is a problem usually reduced with a recursive function?

Algorithm Workbench

1. What will the following program display?

def main():
num = 0
show_me(num)

def show_me(arg):
if arg < 10:

show_me(arg + 1)
else:

print(arg)
main()

526 Chapter 13 Recursion

2. What will the following program display?

def main():
num = 0
show_me(num)

def show_me(arg):
print(arg)
if arg 10:

show_me(arg + 1)
main()

3. The following function uses a loop. Rewrite it as a recursive function that performs the
same operation.

def traffic_sign(n):
while n > 0:

print('No Parking')
n = n – 1

Programming Exercises
1. Recursive Printing

Design a recursive function that accepts an integer argument, n, and prints the numbers 1
up through n.

2. Recursive Multiplication

Design a recursive function that accepts two arguments into the parameters x and y. The
function should return the value of x times y. Remember, multiplication can be performed
as repeated addition as follows:

7 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4

(To keep the function simple, assume that x and y will always hold positive nonzero
integers.)

3. Recursive Lines

Write a recursive function that accepts an integer argument, n. The function should display
n lines of asterisks on the screen, with the first line showing 1 asterisk, the second line
showing 2 asterisks, up to the nth line which shows n asterisks.

4. Largest List Item

Design a function that accepts a list as an argument, and returns the largest value in the list.
The function should use recursion to find the largest item.

5. Recursive List Sum

Design a function that accepts a list of numbers as an argument. The function should recur-
sively calculate the sum of all the numbers in the list and return that value.

VideoNote
The Recursive
Multiplication Problem

Programming Exercises 527

6. Sum of Numbers

Design a function that accepts an integer argument and returns the sum of all the inte-
gers from 1 up to the number passed as an argument. For example, if 50 is passed as an
argument, the function will return the sum of 1, 2, 3, 4, . . . 50. Use recursion to calcu-
late the sum.

7. Recursive Power Method

Design a function that uses recursion to raise a number to a power. The function should
accept two arguments: the number to be raised and the exponent. Assume that the expo-
nent is a nonnegative integer.

8. Ackermann’s Function

Ackermann’s Function is a recursive mathematical algorithm that can be used to test how
well a system optimizes its performance of recursion. Design a function ackermann(m, n),
which solves Ackermann’s function. Use the following logic in your function:

If m � 0 then return n � 1
If n � 0 then return ackermann(m � 1, 1)
Otherwise, return ackermann(m � 1, ackermann(m, n � 1))

Once you’ve designed your function, test it by calling it with small values for m and n.

This page intentionally left blank

14.1 Graphical User Interfaces

CONCEPT: A graphical user interface allows the user to interact with the operating
system and other programs using graphical elements such as icons, buttons,
and dialog boxes.

A computer’s user interface is the part of the computer that the user interacts with. One
part of the user interface consists of hardware devices, such as the keyboard and the video
display. Another part of the user interface lies in the way that the computer’s operating sys-
tem accepts commands from the user. For many years, the only way that the user could
interact with an operating system was through a command line interface, such as the one
shown in Figure 14-1. A command line interface typically displays a prompt, and the user
types a command, which is then executed.

GUI Programming14
TOPICS

14.1 Graphical User Interfaces
14.2 Using the tkinter Module
14.3 Display Text with Label Widgets
14.4 Organizing Widgets with Frames

14.5 Button Widgets and Info Dialog Boxes
14.6 Getting Input with the Entry Widget
14.7 Using Labels as Output Fields
14.8 Radio Buttons and Check Buttons

C
H

A
P

T
E

R

Figure 14-1 A command line interface

529

530 Chapter 14 GUI Programming

Many computer users, especially beginners, find command line interfaces difficult to use.
This is because there are many commands to be learned, and each command has its own
syntax, much like a programming statement. If a command isn’t entered correctly, it will
not work.

In the 1980s, a new type of interface known as a graphical user interface came into use in
commercial operating systems. A graphical user interface (GUI) (pronounced “gooey”),
allows the user to interact with the operating system and other programs through graphi-
cal elements on the screen. GUIs also popularized the use of the mouse as an input device.
Instead of requiring the user to type commands on the keyboard, GUIs allow the user to
point at graphical elements and click the mouse button to activate them.

Much of the interaction with a GUI is done through dialog boxes, which are small windows
that display information and allow the user to perform actions. Figure 14-2 shows an
example of a dialog box from the Windows operating system that allows the user to change
the system’s Internet settings. Instead of typing commands according to a specified syntax,
the user interacts with graphical elements such as icons, buttons, and slider bars.

Figure 14-2 A dialog box

14.2 Using the tkinter Module 531

GUI Programs Are Event-Driven
In a text-based environment, such as a command line interface, programs determine the
order in which things happen. For example, consider a program that calculates the area of
a rectangle. First, the program prompts the user to enter the rectangle’s width. The user
enters the width and then the program prompts the user to enter the rectangle’s length. The
user enters the length and then the program calculates the area. The user has no choice but
to enter the data in the order that it is requested.

In a GUI environment, however, the user determines the order in which things happen. For
example, Figure 14-3 shows a GUI program (written in Python) that calculates the area of
a rectangle. The user can enter the length and the width in any order he or she wishes. If a
mistake is made, the user can erase the data that was entered and retype it. When the user
is ready to calculate the area, he or she clicks the Calculate Area button and the program
performs the calculation. Because GUI programs must respond to the actions of the user, it
is said that they are event-driven. The user causes events to take place, such as the clicking
of a button, and the program must respond to the events.

Figure 14-3 A GUI program

Checkpoint

14.1 What is a user interface?

14.2 How does a command line interface work?

14.3 When the user runs a program in a text-based environment, such as the command
line, what determines the order in which things happen?

14.4 What is an event-driven program?

14.2 Using the tkinter Module

CONCEPT: In Python you can use the tkinter module to create simple GUI programs.

Python does not have GUI programming features built into the language itself. However, it
comes with a module named tkinter that allows you to create simple GUI programs. The
name “tkinter” is short for “Tk interface.” It is named this because it provides a way for
Python programmers to use a GUI library named Tk. Many other programming languages
use the Tk library as well.

NOTE: There are numerous GUI libraries available for Python. Because the tkinter
module comes with Python, we will use it only in this chapter.

532 Chapter 14 GUI Programming

A GUI program presents a window with various graphical widgets that the user can inter-
act with or view. The tkinter module provides 15 widgets, which are described in Table 14-1.
We won’t cover all of the tkinter widgets in this chapter, but we will demonstrate how to
create simple GUI programs that gather input and display data.

Table 14-1 tkinter Widgets

Widget Description

Button A button that can cause an action to occur when it is clicked.

Canvas A rectangular area that can be used to display graphics.

Checkbutton A button that may be in either the “on” or “off” position.

Entry An area in which the user may type a single line of input from the keyboard.

Frame A container that can hold other widgets.

Label An area that displays one line of text or an image.

Listbox A list from which the user may select an item

Menu A list of menu choices that are displayed when the user clicks a
Menubutton widget.

Menubutton A menu that is displayed on the screen and may be clicked by the user

Message Displays multiple lines of text.

Radiobutton A widget that can be either selected or deselected. Radiobutton widgets
usually appear in groups and allow the user to select one of several options.

Scale A widget that allows the user to select a value by moving a slider along a
track.

Scrollbar Can be used with some other types of widgets to provide scrolling ability.

Text A widget that allows the user to enter multiple lines of text input.

Toplevel A container, like a Frame, but displayed in its own window.

The simplest GUI program that we can demonstrate is one that displays an empty window.
Program 14-1 shows how we can do this using the tkinter module. When the program
runs, the window shown in Figure 14-4 is displayed. To exit the program, simply click the
standard Windows close button () in the upper right corner of the window.

NOTE: Programs that use tkinter do not always run reliably under IDLE. This is
because IDLE itself uses tkinter. You can always use IDLE’s editor to write GUI pro-
grams, but for the best results, run them from your operating system’s command
prompt.

Program 14-1 (empty_window1.py)

1 # This program displays an empty window.
2

14.2 Using the tkinter Module 533

3 import tkinter
4
5 def main():
6 # Create the main window widget.
7 main_window = tkinter.Tk()
8
9 # Enter the tkinter main loop.

10 tkinter.mainloop()
11
12 # Call the main function.
13 main()

Figure 14-4 Window displayed by Program 14-1

Line 3 imports the tkinter module. Inside the main function, line 7 creates an instance of
the tkinter module’s Tk class, and assigns it to the main_window variable. This object is
the root widget, which is the main window in the program. Line 10 calls the tkinter mod-
ule’s mainloop function. This function runs like an infinite loop until you close the main
window.

Most programmers prefer to take an object-oriented approach when writing a GUI pro-
gram. Rather than writing a function to create the on-screen elements of a program, it is a
common practice to write a class with an __init__ method that builds the GUI. When an
instance of the class is created, the GUI appears on the screen. To demonstrate, Program
14-2 shows an object-oriented version of our program that displays an empty window.
When this program runs it displays the window shown in Figure 14-4.

Program 14-2 (empty_window2.py)

1 # This program displays an empty window.
2
3 import tkinter
4

(program continues)

534 Chapter 14 GUI Programming

Program 14-2 (continued)

5 class MyGUI:
6 def __init__(self):
7 # Create the main window widget.
8 self.main_window = tkinter.Tk()
9

10 # Enter the tkinter main loop.
11 tkinter.mainloop()
12
13 # Create an instance of the MyGUI class.
14 my_gui = MyGUI()

Lines 5 through 11 are the class definition for the MyGUI class. The class’s __init__
method begins in line 6. Line 8 creates the root widget and assigns it to the class attribute
main_window. Line 11 executes the tkinter module’s mainloop function. The statement
in line 14 creates an instance of the MyGUI class. This causes the class’s __init__ method
to execute, displaying the empty window on the screen.

Checkpoint

14.5 Briefly describe each of the following tkinter widgets:

a) Label
b) Entry
c) Button
d) Frame

14.6 How do you create a root widget?

14.7 What does the tkinter module’s mainloop function do?

14.3 Display Text with Label Widgets

CONCEPT: You use the Label widget to display text in a window.

You can use a Label widget to display a single line of text in a window. To make a Label
widget you create an instance of the tkinter module’s Label class. Program 14-3 creates
a window containing a Label widget that displays the text “Hello World!” The window is
shown in Figure 14-5.

Program 14-3 (hello_world.py)

1 # This program displays a label with text.
2
3 import tkinter
4

VideoNote
Creating a Simple
GUI application

14.3 Display Text with Label Widgets 535

5 class MyGUI:
6 def __init__(self):
7 # Create the main window widget.
8 self.main_window = tkinter.Tk()
9

10 # Create a Label widget containing the
11 # text 'Hello World!'
12 self.label = tkinter.Label(self.main_window, \
13 text='Hello World!')
14
15 # Call the Label widget's pack method.
16 self.label.pack()
17
18 # Enter the tkinter main loop.
19 tkinter.mainloop()
20
21 # Create an instance of the MyGUI class.
22 my_gui = MyGUI()

Figure 14-5 Window displayed by Program 14-3

The MyGUI class in this program is very similar to the one you saw previously in Program
14-2. Its __init__ method builds the GUI when an instance of the class is created. Line 8 cre-
ates a root widget and assigns it to self.main_window. The following statement appears in
lines 12 and 13:

self.label = tkinter.Label(self.main_window, \
text='Hello World!')

This statement creates a Label widget and assigns it to self.label. The first argument
inside the parentheses is self.main_window, which is a reference to the root widget. This
simply specifies that we want the Label widget to belong to the root widget. The second
argument is text='Hello World!'. This specifies the text that we want displayed in the
label.

The statement in line 16 calls the Label widget’s pack method. The pack method deter-
mines where a widget should be positioned, and makes the widget visible when the main
window is displayed. (You call the pack method for each widget in a window.) Line 19 calls
the tkinter module’s mainloop method which displays the program’s main window,
shown in Figure 14-5.

Let’s look at another example. Program 14-4 displays a window with two Label widgets,
shown in Figure 14-6.

536 Chapter 14 GUI Programming

Program 14-4 (hello_world2.py)

1 # This program displays two labels with text.
2
3 import tkinter
4
5 class MyGUI:
6 def __init__(self):
7 # Create the main window widget.
8 self.main_window = tkinter.Tk()
9

10 # Create two Label widget.
11 self.label1 = tkinter.Label(self.main_window, \
12 text='Hello World!')
13 self.label2 = tkinter.Label(self.main_window, \
14 text='This is my GUI program.')
15
16 # Call both Label widgets' pack method.
17 self.label1.pack()
18 self.label2.pack()
19
20 # Enter the tkinter main loop.
21 tkinter.mainloop()
22
23 # Create an instance of the MyGUI class.
24 my_gui = MyGUI()

Figure 14-6 Window displayed by Program 14-4

Notice that the two Label widgets are displayed with one stacked on top of the other. We
can change this layout by specifying an argument to pack method, as shown in Program 14-5.
When the program runs it displays the window shown in Figure 14-7.

Program 14-5 (hello_world3.py)

1 # This program uses the side='left' argument with
2 # the pack method to change the layout of the widgets.
3
4 import tkinter
5
6 class MyGUI:
7 def __init__(self):

14.4 Organizing Widgets with Frames 537

8 # Create the main window widget.
9 self.main_window = tkinter.Tk()

10
11 # Create two Label widgets.
12 self.label1 = tkinter.Label(self.main_window, \
13 text='Hello World!')
14 self.label2 = tkinter.Label(self.main_window, \
15 text='This is my GUI program.')
16
17 # Call both Label widgets' pack method.
18 self.label1.pack(side='left')
19 self.label2.pack(side='left')
20
21 # Enter the tkinter main loop.
22 tkinter.mainloop()
23
24 # Create an instance of the MyGUI class.
25 my_gui = MyGUI()

Figure 14-7 Window displayed by Program 14-5

In lines 18 and 19 we call each Label widget’s pack method passing the argument
side='left'. This specifies that the widget should be positioned as far left as possible
inside the parent widget. Because the label1 widget was added to the main_window first,
it will appear at the leftmost edge. The label2 widget was added next, so it appears next
to the label1 widget. As a result, the labels appear side by side. The valid side arguments
that you can pass to the pack method are side='top', side='bottom', side='left',
and side='right'.

Checkpoint

14.8 What does a widget’s pack method do?

14.9 If you create two Label widgets and call their pack methods with no arguments,
how will the Label widgets be arranged inside their parent widget?

14.10 What argument would you pass to a widget’s pack method to specify that it
should be positioned as far left as possible inside the parent widget?

14.4 Organizing Widgets with Frames

CONCEPT: A Frame is a container that can hold other widgets. You can use Frames
to organize the widgets in a window.

538 Chapter 14 GUI Programming

A Frame is a container. It is a widget that can hold other widgets. Frames are useful for
organizing and arranging groups of widgets in a window. For example, you can place a set
of widgets in one Frame and arrange them in a particular way, then place a set of widgets
in another Frame and arrange them in a different way. Program 14-6 demonstrates this.
When the program runs it displays the window shown in Figure 14-8.

Program 14-6 (frame_demo.py)

1 # This program creates labels in two different frames.
2
3 import tkinter
4
5 class MyGUI:
6 def __init__(self):
7 # Create the main window widget.
8 self.main_window = tkinter.Tk()
9

10 # Create two frames, one for the top of the
11 # window, and one for the bottom.
12 self.top_frame = tkinter.Frame(self.main_window)
13 self.bottom_frame = tkinter.Frame(self.main_window)
14
15 # Create three Label widgets for the
16 # top frame.
17 self.label1 = tkinter.Label(self.top_frame, \
18 text='Winken')
19 self.label2 = tkinter.Label(self.top_frame, \
20 text='Blinken')
21 self.label3 = tkinter.Label(self.top_frame, \
22 text='Nod')
23
24 # Pack the labels that are in the top frame.
25 # Use the side='top' argument to stack them
26 # one on top of the other.
27 self.label1.pack(side='top')
28 self.label2.pack(side='top')
29 self.label3.pack(side='top')
30
31 # Create three Label widgets for the
32 # bottom frame.
33 self.label4 = tkinter.Label(self.top_frame, \
34 text='Winken')
35 self.label5 = tkinter.Label(self.top_frame, \
36 text='Blinken')
37 self.label6 = tkinter.Label(self.top_frame, \
38 text='Nod')
39

14.4 Organizing Widgets with Frames 539

40 # Pack the labels that are in the bottom frame.
41 # Use the side='left' argument to arrange them
42 # horizontally from the left of the frame.
43 self.label4.pack(side='left')
44 self.label5.pack(side='left')
45 self.label6.pack(side='left')
46
47 # Yes, we have to pack the frames too!
48 self.top_frame.pack()
49 self.bottom_frame.pack()
50
51 # Enter the tkinter main loop.
52 tkinter.mainloop()
53
54 # Create an instance of the MyGUI class.
55 my_gui = MyGUI()

Figure 14-8 Window displayed by Program 14-6

Take a closer look at lines 12 and 13:

self.top_frame = tkinter.Frame(self.main_window)
self.bottom_frame = tkinter.Frame(self.main_window)

These lines create two Frame objects. The self.main_window argument that appears
inside the parentheses cause the Frames to be added to the main_window widget.

Lines 17 through 22 create three Label widgets. Notice that these widgets are added to the
self.top_frame widget. Then, lines 27 through 29 call each of the Label widgets’ pack
method, passing side='top' as an argument. As shown in Figure 14-6, this causes the
three widgets to be stacked one on top of the other inside the Frame.

Lines 23 through 28 create three more Label widgets. These Label widgets are added to
the self.bottom_frame widget. Then, lines 43 through 45 call each of the Label widgets’
pack method, passing side='left' as an argument. As shown in Figure 14-9, this causes the
three widgets to appear horizontally inside the Frame.

Lines 48 and 49 call the Frame widgets’ pack method, which makes the Frame widgets vis-
ible. Line 52 executes the tkinter module’s mainloop function.

540 Chapter 14 GUI Programming

14.5 Button Widgets and Info Dialog Boxes

CONCEPT: You use the Button widget to create a standard button in a window.
When the user clicks a button, a specified function or method is called.

An info dialog box is a simple window that displays a message to the
user and has an OK button that dismisses the dialog box. You can use
the tkinter.messagebox module’s showinfo function to display an
info dialog box.

A Button is a widget that the user can click to cause an action to take place. When you cre-
ate a Button widget you can specify the text that is to appear on the face of the button,
and the name of a callback function. A callback function is a function or method that exe-
cutes when the user clicks the button.

Figure 14-9 Arrangement of widgets

Winken
Blinken

Nod

Winken Blinken Nod

top_frame

bottom_frame

label1

label3
label2

label4 label6label5

NOTE: A callback function is also known as an event handler because it handles the
event that occurs when the user clicks the button.

To demonstrate, we will look at Program 14-7. This program displays the window shown
in Figure 14-10. When the user clicks the button, the program displays a separate info
dialog box, shown in Figure 14-11. We use a function named showinfo, which is in the
tkinter.messagebox module, to display the info dialog box. (To use the showinfo func-
tion you will need to import the tkinter.messagebox module.) This is the general format
of the showinfo function call:

tkinter.messagebox.showinfo(title, message)

In the general format, title is a string that is displayed in the dialog box’s title bar, and
message is an informational string that is displayed in the main part of the dialog box.

Program 14-7 (button_demo.py)

1 # This program demonstrates a Button widget.
2 # When the user clicks the Button, an
3 # info dialog box is displayed.

VideoNote
Responding to Button
Clicks

14.5 Button Widgets and Info Dialog Boxes 541

4
5 import tkinter
6 import tkinter.messagebox
7
8 class MyGUI:
9 def __init__(self):

10 # Create the main window widget.
11 self.main_window = tkinter.Tk()
12
13 # Create a Button widget. The text 'Click Me!'
14 # should appear on the face of the Button. The
15 # do_something method should be executed when
16 # the user clicks the Button.
17 self.my_button = tkinter.Button(self.main_window, \
18 text='Click Me!', \
19 command=self.do_something)
20
21 # Pack the Button.
22 self.my_button.pack()
23
24 # Enter the tkinter main loop.
25 tkinter.mainloop()
26
27 # The do_something method is a callback function
28 # for the Button widget.
29
30 def do_something(self):
31 # Display an info dialog box.
32 tkinter.messagebox.showinfo('Response', \
33 'Thanks for clicking the button.')
34
35 # Create an instance of the MyGUI class.
36 my_gui = MyGUI()

Figure 14-10 The main window displayed by Program 14-7

Figure 14-11 The info dialog box displayed by Program 14-7

542 Chapter 14 GUI Programming

Line 5 imports the tkinter module and line 6 imports the tkinter.messagebox mod-
ule. Line 11 creates the root widget and assigns it to the main_window variable.

The statement in lines 17 through 19 creates the Button widget. The first argument inside
the parentheses is self.main_window, which is the parent widget. The text='Click Me!'
argument specifies that the string ‘Click Me!’ should appear on the face of the button. The
command='self.do_something' argument specifies the class’s do_something method as the
callback function. When the user clicks the button, the do_something method will execute.

The do_something method appears in lines 31 through 33. The method simply calls the tkin-
ter.messagebox.showinfo function to display the info box shown in Figure 14-11. To dis-
miss the dialog box the user can click the OK button.

Creating a Quit Button
GUI programs usually have a Quit button (or an Exit button) that closes the program when
the user clicks it. To create a Quit button in a Python program you simply create a Button
widget that calls the root widget’s destroy method as a callback function. Program 14-8
demonstrates how to do this. It is a modified version of Program 14-7, with a second
Button widget added as shown in Figure 14-12.

Program 14-8 (quit_button.py)

1 # This program has a Quit button that calls
2 # the Tk class's destroy method when clicked.
3
4 import tkinter
5 import tkinter.messagebox
6
7 class MyGUI:
8 def __init__(self):
9 # Create the main window widget.

10 self.main_window = tkinter.Tk()
11
12 # Create a Button widget. The text 'Click Me!'
13 # should appear on the face of the Button. The
14 # do_something method should be executed when
15 # the user clicks the Button.
16 self.my_button = tkinter.Button(self.main_window, \
17 text='Click Me!', \
18 command=self.do_something)
19
20 # Create a Quit button. When this button is clicked
21 # the root widget's destroy method is called.

14.6 Getting Input with the Entry Widget 543

22 # (The main_window variable references the root widget,
23 # so the callback function is self.main_window.destroy.)
24 self.quit_button = tkinter.Button(self.main_window, \
25 text='Quit', \
26 command=self.main_window.destroy)
27
28
29 # Pack the Buttons.
30 self.my_button.pack()
31 self.quit_button.pack()
32
33 # Enter the tkinter main loop.
34 tkinter.mainloop()
35
36 # The do_something method is a callback function
37 # for the Button widget.
38
39 def do_something(self):
40 # Display an info dialog box.
41 tkinter.messagebox.showinfo('Response', \
42 'Thanks for clicking the button.')
43
44 # Create an instance of the MyGUI class.
45 my_gui = MyGUI()

Figure 14-12 The info dialog box displayed by Program 14-7

The statement in lines 24 through 26 creates the Quit button. Notice that the
self.main_window.destroy method is used as the callback function. When the user
clicks the button, this method is called and the program ends.

14.6 Getting Input with the Entry Widget

CONCEPT: An Entry widget is a rectangular area that the user can type input into.
You use the Entry widget’s get method to retrieve the data that has been
typed into the widget.

An Entry widget is a rectangular area that the user can type text into. Entry widgets are
used to gather input in a GUI program. Typically, a program will have one or more Entry

544 Chapter 14 GUI Programming

widgets in a window, along with a button that the user clicks to submit the data that he or
she has typed into the Entry widgets. The button’s callback function retrieves data from
the window’s Entry widgets and processes it.

You use an Entry widget’s get method to retrieve the data that the user has typed into the
widget. The get method returns a string, so it will have to be converted to the appropriate
data type if the Entry widget is used for numeric input.

To demonstrate we will look at a program that allows the user to enter a distance in kilo-
meters into an Entry widget, and then click a button to see that distance converted to miles.
The formula for converting kilometers to miles is:

Miles � Kilometers � 0.6214

Figure 14-13 shows the window that the program displays. To arrange the widgets in the
positions shown in the figure, we will organize them in two frames, as shown in Figure 14-14.
The label that displays the prompt and the Entry widget will be stored in the top_frame,
and their pack methods will be called with the side='left' argument. This will cause
them to appear horizontally in the frame. The Convert button and the Quit button will be
stored in the bottom_frame, and their pack methods will also be called with the
side='left' argument.

Program 14-9 shows the code for the program. Figure 14-15 shows what happens when the
user enters 1000 into the Entry widget and then clicks the Convert button.

Figure 14-13 The kilo_converter program’s window

Figure 14-14 The window organized with frames

Program 14-9 (kilo_converter.py)

1 # This program converts distances in kilometers
2 # to miles. The result is displayed in an info
3 # dialog box.
4
5 import tkinter
6 import tkinter.messagebox

top_frame

bottom_frame

14.6 Getting Input with the Entry Widget 545

7
8 class KiloConverterGUI:
9 def __init__(self):

10
11 # Create the main window.
12 self.main_window = tkinter.Tk()
13
14 # Create two frames to group widgets.
15 self.top_frame = tkinter.Frame(self.main_window)
16 self.bottom_frame = tkinter.Frame(self.main_window)
17
18 # Create the widgets for the top frame.
19 self.prompt_label = tkinter.Label(self.top_frame, \
20 text='Enter a distance in kilometers:')
21 self.kilo_entry = tkinter.Entry(self.top_frame, \
22 width=10)
23
24 # Pack the top frame's widgets.
25 self.prompt_label.pack(side='left')
26 self.kilo_entry.pack(side='left')
27
28 # Create the button widgets for the bottom frame.
29 self.calc_button = tkinter.Button(self.bottom_frame, \
30 text='Convert', \
31 command=self.convert)
32 self.quit_button = tkinter.Button(self.bottom_frame, \
33 text='Quit', \
34 command=self.main_window.destroy)
35 # Pack the buttons.
36 self.calc_button.pack(side='left')
37 self.quit_button.pack(side='left')
38
39 # Pack the frames.
40 self.top_frame.pack()
41 self.bottom_frame.pack()
42
43 # Enter the tkinter main loop.
44 tkinter.mainloop()
45
46 # The convert method is a callback function for
47 # the Calculate button.
48
49 def convert(self):
50 # Get the value entered by the user into the
51 # kilo_entry widget.
52 kilo = float(self.kilo_entry.get())
53

(program continues)

546 Chapter 14 GUI Programming

Program 14-9 (continued)

54 # Convert kilometers to miles.
55 miles = kilo * 0.6214
56
57 # Display the results in an info dialog box.
58 tkinter.messagebox.showinfo('Results', \
59 str(kilo) + ' kilometers is equal to ' + \
60 str(miles) + ' miles.')
61
62 # Create an instance of the KiloConverterGUI class.
63 kilo_conv = KiloConverterGUI()

Figure 14-15 The info dialog box

1
The user enters 1000 into
the Entry widget and clicks
the Convert button.

2
This info dialog box
is displayed.

The convert method, shown in lines 49 through 60 is the Convert button’s callback func-
tion. The statement in line 52 calls the kilo_entry widget’s get method to retrieve the
data that has been typed into the widget. The value is converted to a float and then
assigned to the kilo variable. The calculation in line 55 performs the conversion and
assigns the results to the miles variable. Then, the statement in lines 58 through 60 dis-
plays the info dialog box with a message that gives the converted value.

14.7 Using Labels as Output Fields

CONCEPT: When a StringVar object is associated with a Label widget, the Label
widget displays any data that is stored in the StringVar object.

Previously you saw how to use an info dialog box to display output. If you don’t want to
display a separate dialog box for your program’s output, you can use Label widgets in the
program’s main window to dynamically display output. You simply create empty Label
widgets in your main window, and then write code that displays the desired data in those
labels when a button is clicked.

The tkinter module provides a class named StringVar that can be used along with a
Label widget to display data. First you create a StringVar object. Then, you create a

14.7 Using Labels as Output Fields 547

Label widget and associate it with the StringVar object. From that point on, any value
that is then stored in the StringVar object will automatically be displayed in the Label
widget.

Program 14-10 demonstrates how to do this. It is a modified version of the kilo_
converter program that you saw in Program 14-9. Instead of popping up an info
dialog box, this version of the program displays the number of miles in a label in the
main window.

Program 14-10 (kilo_converter2.py)

1 # This program converts distances in kilometers
2 # to miles. The result is displayed in a label
3 # on the main window.
4
5 import tkinter
6
7 class KiloConverterGUI:
8 def __init__(self):
9

10 # Create the main window.
11 self.main_window = tkinter.Tk()
12
13 # Create three frames to group widgets.
14 self.top_frame = tkinter.Frame()
15 self.mid_frame = tkinter.Frame()
16 self.bottom_frame = tkinter.Frame()
17
18 # Create the widgets for the top frame.
19 self.prompt_label = tkinter.Label(self.top_frame, \
20 text='Enter a distance in kilometers:')
21 self.kilo_entry = tkinter.Entry(self.top_frame, \
22 width=10)
23
24 # Pack the top frame's widgets.
25 self.prompt_label.pack(side='left')
26 self.kilo_entry.pack(side='left')
27
28 # Create the widgets for the middle frame.
29 self.descr_label = tkinter.Label(self.mid_frame, \
30 text='Converted to miles:')
31
32 # We need a StringVar object to associate with
33 # an output label. Use the object's set method
34 # to store a string of blank characters.
35 self.value = tkinter.StringVar()
36

(program continues)

548 Chapter 14 GUI Programming

Program 14-10 (continued)

37 # Create a label and associate it with the
38 # StringVar object. Any value stored in the
39 # StringVar object will automatically be displayed
40 # in the label.
41 self.miles_label = tkinter.Label(self.mid_frame, \
42 textvariable=self.value)
43
44 # Pack the middle frame's widgets.
45 self.descr_label.pack(side='left')
46 self.miles_label.pack(side='left')
47
48 # Create the button widgets for the bottom frame.
49 self.calc_button = tkinter.Button(self.bottom_frame, \
50 text='Convert', \
51 command=self.convert)
52 self.quit_button = tkinter.Button(self.bottom_frame, \
53 text='Quit', \
54 command=self.main_window.destroy)
55
56 # Pack the buttons.
57 self.calc_button.pack(side='left')
58 self.quit_button.pack(side='left')
59
60 # Pack the frames.
61 self.top_frame.pack()
62 self.mid_frame.pack()
63 self.bottom_frame.pack()
64
65 # Enter the tkinter main loop.
66 tkinter.mainloop()
67
68 # The convert method is a callback function for
69 # the Calculate button.
70
71 def convert(self):
72 # Get the value entered by the user into the
73 # kilo_entry widget.
74 kilo = float(self.kilo_entry.get())
75
76 # Convert kilometers to miles.
77 miles = kilo * 0.6214
78
79 # Convert miles to a string and store it
80 # in the StringVar object. This will automatically
81 # update the miles_label widget.

14.7 Using Labels as Output Fields 549

82 self.value.set(miles)
83
84 # Create an instance of the KiloConverterGUI class.
85 kilo_conv = KiloConverterGUI()

When this program runs it displays the window shown in Figure 14-16. Figure 14-17 shows
what happens when the user enters 1000 for the kilometers and clicks the Convert button.
The number of miles is displayed in a label in the main window.

Figure 14-16 The window initially displayed

Figure 14-17 The window showing 1000 kilometers converted to miles

Let’s look at the code. Lines 14 through 16 create three frames: top_frame, mid_frame,
and bottom_frame. Lines 19 through 26 create the widgets for the top frame and calls their
pack method.

Lines 29 through 30 create the Label widget with the text 'Converted to miles:'
that you see on the main window in Figure 14-16. Then, line 35 creates a StringVar
object and assigns it to the value variable. Line 41 creates a Label widget named
miles_label that we will use to display the number of miles. Notice that in line 42 we
use the argument textvariable=self.value. This creates an association between the
Label widget and the StringVar object that is referenced by the value variable. Any
value that we store in the StringVar object will be displayed in the label.

Lines 45 and 46 pack the two Label widgets that are in the mid_frame. Lines 49 through
58 create the Button widgets and pack them. Lines 61 through 63 pack the Frame objects.
Figure 14-18 shows how the various widgets in this window are organized in the three
frames.

The convert method, shown in lines 71 through 82 is the Convert button’s callback func-
tion. The statement in line 74 calls the kilo_entry widget’s get method to retrieve the
data that has been typed into the widget. The value is converted to a float and then
assigned to the kilo variable. The calculation in line 77 performs the conversion and
assigns the results to the miles variable. Then the statement in line 82 calls the StringVar

550 Chapter 14 GUI Programming

object’s set method, passing miles as an argument. This stores the value referenced by
miles in the StringVar object, and also causes it to be displayed in the miles_label
widget.

Figure14-18 Layout of the kilo_converter2 program’s main window

top_frame

bottom_frame

mid_frame miles_label
(invisible)

In the Spotlight:
Creating a GUI Program
Kathryn teaches a science class. In Chapter 4, we stepped through the development of a
program that her students can use to calculate the average of three test scores. The program
prompts the student to enter each score, and then it displays the average. She has asked you
to design a GUI program that performs a similar operation. She would like the program to
have three Entry widgets that the test scores can be entered into, and a button that causes
the average to be displayed when clicked.

Before we begin writing code, it will be helpful if we draw a sketch of the program’s win-
dow, as shown in Figure 14-19. The sketch also shows the type of each widget. (The num-
bers that appear in the sketch will help us when we make a list of all the widgets.)

Figure 14-19 A sketch of the window

1

2

3

4

Enter the score for test 1:

Enter the score for test 2:

Enter the score for test 3:

Average

Average Quit

Entry

Entry

Entry

Button Button

Label

Label

Label

Label

Label

5

6

7

8

109

14.7 Using Labels as Output Fields 551

We can see from the sketch that we have five rows of widgets in the window. To organize
them we will also create five Frame objects. Figure 14-20 shows how we will position the
widgets inside the five Frame objects.

Widget
Number
in Figure
14-19 Widget Type Description Name

1 Label Instructs the user to enter the score for test 1. test1_label

2 Label Instructs the user to enter the score for test 2. test2_label

3 Label Instructs the user to enter the score for test 3. test3_label

4 Label Identifies the average, which will be displayed
next to this label.

result_label

5 Entry This is where the user will enter the score for test 1. test1_entry

6 Entry This is where the user will enter the score for test 2. test2_entry

7 Entry This is where the user will enter the score for test 3. test3_entry

8 Label The program will display the average test score
in this label.

avg_label

9 Button When this button is clicked, the program will
calculate the average test score and display it in
the averageLabel component.

calc_button

10 Button When this button is clicked the program will end. quit_button

By examining the sketch we can make a list of the widgets that we need. As we make the
list, we will include a brief description of each widget and a name that we will assign to
each widget when we construct it.

Figure 14-20 Using frames to organize the widgets

test1_frameEnter the score for test 1:

Enter the score for test 2:

Enter the score for test 3:

Average

Average Quit

test2_frame

test3_frame

avg_frame

button_frame

Program 14-11 shows the code for the program, and Figure 14-21 shows the program’s
window with data entered by the user.

Program 14-11 (test_averages.py)

1 # This program uses a GUI to get three test
2 # scores and display their average.
3
4 import tkinter
5
6 class TestAvg:
7 def __init__(self):
8 # Create the main window.
9 self.main_window = tkinter.Tk()
10
11 # Create the five frames.
12 self.test1_frame = tkinter.Frame(self.main_window)
13 self.test2_frame = tkinter.Frame(self.main_window)
14 self.test3_frame = tkinter.Frame(self.main_window)
15 self.avg_frame = tkinter.Frame(self.main_window)
16 self.button_frame = tkinter.Frame(self.main_window)
17
18 # Create and pack the widgets for test 1.
19 self.test1_label = tkinter.Label(self.test1_frame, \
20 text='Enter the score for test 1:')
21 self.test1_entry = tkinter.Entry(self.test1_frame, \
22 width=10)
23 self.test1_label.pack(side='left')
24 self.test1_entry.pack(side='left')
25
26 # Create and pack the widgets for test 2.
27 self.test2_label = tkinter.Label(self.test2_frame, \
28 text='Enter the score for test 2:')
29 self.test2_entry = tkinter.Entry(self.test2_frame, \
30 width=10)
31 self.test2_label.pack(side='left')
32 self.test2_entry.pack(side='left')
33
34 # Create and pack the widgets for test 3.
35 self.test3_label = tkinter.Label(self.test3_frame, \
36 text='Enter the score for test 3:')
37 self.test3_entry = tkinter.Entry(self.test3_frame, \
38 width=10)
39 self.test3_label.pack(side='left')
40 self.test3_entry.pack(side='left')
41
42 # Create and pack the widgets for the average.
43 self.result_label = tkinter.Label(self.avg_frame, \

552 Chapter 14 GUI Programming

14.7 Using Labels as Output Fields 553

44 text='Average:')
45 self.avg = tkinter.StringVar() # To update avg_label
46 self.avg_label = tkinter.Label(self.avg_frame, \
47 textvariable=self.avg)
48 self.result_label.pack(side='left')
49 self.avg_label.pack(side='left')
50
51 # Create and pack the button widgets.
52 self.calc_button = tkinter.Button(self.button_frame, \
53 text='Average', \
54 command=self.calc_avg)
55 self.quit_button = tkinter.Button(self.button_frame, \
56 text='Quit', \
57 command=self.main_window.destroy)
58 self.calc_button.pack(side='left')
59 self.quit_button.pack(side='left')
60
61 # Pack the frames.
62 self.test1_frame.pack()
63 self.test2_frame.pack()
64 self.test3_frame.pack()
65 self.avg_frame.pack()
66 self.button_frame.pack()
67
68 # Start the main loop.
69 tkinter.mainloop()
70
71 # The calc_avg method is the callback function for
72 # the calc_button widget.
73
74 def calc_avg(self):
75 # Get the three test scores and store them
76 # in variables.
77 self.test1 = float(self.test1_entry.get())
78 self.test2 = float(self.test2_entry.get())
79 self.test3 = float(self.test3_entry.get())
80
81 # Calculate the average.
82 self.average = (self.test1 + self.test2 + \
83 self.test3) / 3.0
84
85 # Update the avg_label widget by storing
86 # the value of self.average in the StringVar
87 # object referenced by avg.
88 self.avg.set(self.average)
89
90 # Create an instance of the TestAvg class.
91 test_avg = TestAvg()

554 Chapter 14 GUI Programming

Checkpoint

14.11 How do you retrieve data from an Entry widget?

14.12 When you retrieve a value from an Entry widget, of what data type is it?

14.13 What module is the StringVar class in?

14.14 What can you accomplish by associating a StringVar object with a Label
widget?

14.8 Radio Buttons and Check Buttons

CONCEPT: Radio buttons normally appear in groups of two or more and allow the
user to select one of several possible options. Check buttons, which may
appear alone or in groups, allow the user to make yes/no or on/off
selections.

Radio Buttons
Radio buttons are useful when you want the user to select one choice from several possible
options. Figure 14-22 shows a window containing a group of radio buttons. A radio but-
ton may be selected or deselected. Each radio button has a small circle that appears filled
in when the radio button is selected and appears empty when the radio button is deselected.

Figure 14-21 The test_averages program window

Figure 14-22 A group of radio buttons

You use the tkinter module’s Radiobutton class to create Radiobutton widgets. Only
one of the Radiobutton widgets in a container, such as a frame, may be selected at any

14.8 Radio Buttons and Check Buttons 555

time. Clicking a Radiobutton selects it and automatically deselects any other
Radiobutton in the same container. Because only one Radiobutton in a container can be
selected at any given time, they are said to be mutually exclusive.

NOTE: The name “radio button” refers to the old car radios that had push buttons
for selecting stations. Only one of the buttons could be pushed in at a time. When
you pushed a button in, it automatically popped out any other button that was
pushed in.

The tkinter module provides a class named IntVar that can be used along with
Radiobutton widgets. When you create a group of Radiobuttons, you associate them all
with the same IntVar object. You also assign a unique integer value to each Radiobutton
widget. When one of the Radiobutton widgets is selected, it stores its unique integer value in
the IntVar object.

Program 14-12 demonstrates how to create and use Radiobuttons. Figure 14-23. shows
the window that the program displays. When the user clicks the OK button an info dialog
box appears indicating which of the Radiobuttons is selected.

Program 14-12 (radiobutton_demo.py)

1 # This program demonstrates a group of Radiobutton widgets.
2
3 import tkinter
4 import tkinter.messagebox
5
6 class MyGUI:
7 def __init__(self):
8 # Create the main window.
9 self.main_window = tkinter.Tk()
10
11 # Create two frames. One for the Radiobuttons
12 # and another for the regular Button widgets.
13 self.top_frame = tkinter.Frame(self.main_window)
14 self.bottom_frame = tkinter.Frame(self.main_window)
15
16 # Create an IntVar object to use with
17 # the Radiobuttons.
18 self.radio_var = tkinter.IntVar()
19
20 # Set the intVar object to 1.

(program continues)

556 Chapter 14 GUI Programming

Program 14-12 (continued)

21 self.radio_var.set(1)
22
23 # Create the Radiobutton widgets in the top_frame.
24 self.rb1 = tkinter.Radiobutton(self.top_frame, \
25 text='Option 1', variable=self.radio_var, \
26 value=1)
27 self.rb2 = tkinter.Radiobutton(self.top_frame, \
28 text='Option 2', variable=self.radio_var, \
29 value=2)
30 self.rb3 = tkinter.Radiobutton(self.top_frame, \
31 text='Option 3', variable=self.radio_var, \
32 value=3)
33
34 # Pack the Radiobuttons.
35 self.rb1.pack()
36 self.rb2.pack()
37 self.rb3.pack()
38
39 # Create an OK button and a Quit button.
40 self.ok_button = tkinter.Button(self.bottom_frame, \
41 text='OK', command=self.show_choice)
42 self.quit_button = tkinter.Button(self.bottom_frame, \
43 text='Quit', command=self.main_window.destroy)
44
45 # Pack the Buttons.
46 self.ok_button.pack(side='left')
47 self.quit_button.pack(side='left')
48
49 # Pack the frames.
50 self.top_frame.pack()
51 self.bottom_frame.pack()
52
53 # Start the mainloop.
54 tkinter.mainloop()
55
56 # The show_choice method is the callback function for the
57 # OK button.
58
59 def show_choice(self):
60 tkinter.messagebox.showinfo('Selection', 'You selected option ' +\
61 str(self.radio_var.get()))
62
63 # Create an instance of the MyGUI class.
64 my_gui = MyGUI()

14.8 Radio Buttons and Check Buttons 557

Line 18 creates an IntVar object named radio_var. Line 21 calls the radio_var object’s
set method to store the integer value 1 in the object. (You will see the significance of this
in a moment.)

Lines 24, 25, and 26 create the first Radiobutton widget. The argument variable
=self.radio_var (in line 25) associates the Radiobutton with the radio_var object. The
argument value=1 (in line 26) assigns the integer 1 to this Radiobutton. As a result, any
time this Radiobutton is selected, the value 1 will be stored in the radio_var object.

Lines 27, 28, and 29 create the second Radiobutton widget. Notice that this Radiobutton
is also associated with the radio_var object. The argument value=2 (in line 29) assigns
the integer 2 to this Radiobutton. As a result, any time this Radiobutton is selected, the
value 2 will be stored in the radio_var object.

Lines 30, 31, and 32 create the third Radiobutton widget. This Radiobutton is also asso-
ciated with the radio_var object. The argument value=3 (in line 32) assigns the integer 3
to this Radiobutton. As a result, any time this Radiobutton is selected, the value 3 will
be stored in the radio_var object.

The show_choice method in lines 59 through 61 is the callback function for the OK but-
ton. When the method executes it calls the radio_var object’s get method to retrieve the
value stored in the object. The value is displayed in an info dialog box.

Did you notice that when the program runs the first Radiobutton is initially selected?
This is because we set the radio_var object to the value 1 in line 21. Not only can the
radio_var object be used to determine which Radiobutton was selected, but it can also
be used to select a specific Radiobutton. When we store a particular Radiobutton’s value
in the radio_var object, that Radiobutton will become selected.

Using Callback Functions with Radiobuttons
Program 14-12 waits for the user to click the OK button before it determines which
Radiobutton was selected. If you prefer, you can also specify a callback function with
Radiobutton widgets. Here is an example:

self.rb1 = tkinter.Radiobutton(self.top_frame, \
text='Option 1', variable=self.radio_var, \
value=1, command=self.my_method)

This code uses the argument command=self.my_method to specify that my_method is the
callback function. The method my_method will be executed immediately when the
Radiobutton is selected.

Figure 14-23 Window displayed by Program 14-12

558 Chapter 14 GUI Programming

Check Buttons
A check button appears as a small box with a label appearing next to it. The window
shown in Figure 14-24 has three check buttons.

Figure 14-24 A group of check buttons

Like radio buttons, check buttons may be selected or deselected. When a check button is
selected, a small check mark appears inside its box. Although check buttons are often dis-
played in groups, they are not used to make mutually exclusive selections. Instead, the user
is allowed to select any or all of the check buttons that are displayed in a group.

You use the tkinter module’s Checkbutton class to create Checkbutton widgets. As with
Radiobuttons, you can use an IntVar object along with a Checkbutton widget. Unlike
Radiobuttons, however, you associate a different IntVar object with each Checkbutton.
When a Checkbutton is selected, its associated IntVar object will hold the value 1. When
a Checkbutton is selected, its associated IntVar object will hold the value 0.

Program 14-13 demonstrates how to create and use Checkbuttons. Figure 14-25 shows the
window that the program displays. When the user clicks the OK button an info dialog box
appears indicating which of the Checkbuttons is selected.

Program 14-13 (checkbutton_demo.py)

1 # This program demonstrates a group of Checkbutton widgets.
2
3 import tkinter
4 import tkinter.messagebox
5
6 class MyGUI:
7 def __init__(self):
8 # Create the main window.
9 self.main_window = tkinter.Tk()
10
11 # Create two frames. One for the checkbuttons
12 # and another for the regular Button widgets.
13 self.top_frame = tkinter.Frame(self.main_window)
14 self.bottom_frame = tkinter.Frame(self.main_window)

14.8 Radio Buttons and Check Buttons 559

15
16 # Create three IntVar objects to use with
17 # the Checkbuttons.
18 self.cb_var1 = tkinter.IntVar()
19 self.cb_var2 = tkinter.IntVar()
20 self.cb_var3 = tkinter.IntVar()
21
22 # Set the intVar objects to 0.
23 self.cb_var1.set(0)
24 self.cb_var2.set(0)
25 self.cb_var3.set(0)
26
27 # Create the Checkbutton widgets in the top_frame.
28 self.cb1 = tkinter.Checkbutton(self.top_frame, \
29 text='Option 1', variable=self.cb_var1)
30 self.cb2 = tkinter.Checkbutton(self.top_frame, \
31 text='Option 2', variable=self.cb_var2)
32 self.cb3 = tkinter.Checkbutton(self.top_frame, \
33 text='Option 3', variable=self.cb_var3)
34
35 # Pack the Checkbuttons.
36 self.cb1.pack()
37 self.cb2.pack()
38 self.cb3.pack()
39
40 # Create an OK button and a Quit button.
41 self.ok_button = tkinter.Button(self.bottom_frame, \
42 text='OK', command=self.show_choice)
43 self.quit_button = tkinter.Button(self.bottom_frame, \
44 text='Quit', command=self.main_window.destroy)
45
46 # Pack the Buttons.
47 self.ok_button.pack(side='left')
48 self.quit_button.pack(side='left')
49
50 # Pack the frames.
51 self.top_frame.pack()
52 self.bottom_frame.pack()
53
54 # Start the mainloop.
55 tkinter.mainloop()
56
57 # The show_choice method is the callback function for the

(program continues)

560 Chapter 14 GUI Programming

Program 14-13 (continued)

58 # OK button.
59
60 def show_choice(self):
61 # Create a message string.
62 self.message = 'You selected:\n'
63
64 # Determine which Checkbuttons are selected and
65 # build the message string accordingly.
66 if self.cb_var1.get() == 1:
67 self.message = self.message + '1\n'
68 if self.cb_var2.get() == 1:
69 self.message = self.message + '2\n'
70 if self.cb_var3.get() == 1:
71 self.message = self.message + '3\n'
72
73 # Display the message in an info dialog box.
74 tkinter.messagebox.showinfo('Selection', self.message)
75
76 # Create an instance of the MyGUI class.
77 my_gui = MyGUI()

Figure 14-25 Window displayed by Program 14-13

Checkpoint

14.15 You want the user to be able to select only one item from a group of items.
Which type of component would you use for the items, radio buttons or check
boxes?

14.16 You want the user to be able to select any number of items from a group of
items. Which type of component would you use for the items, radio buttons or
check boxes?

14.17 How can you use an IntVar object to determine which Radiobutton has been
selected in a group of Radiobuttons?

14.18 How can you use an IntVar object to determine whether a Checkbutton has
been selected?

Review Questions 561

Review Questions
Multiple Choice

1. The _______________ is the part of a computer with which the user interacts.
a. central processing unit
b. user interface
c. control system
d. interactivity system

2. Before GUIs became popular, the _______________ interface was the most commonly
used.
a. command line
b. remote terminal
c. sensory
d. event-driven

3. A _______________ is a small window that displays information and allows the user to
perform actions.
a. menu
b. confirmation window
c. startup screen
d. dialog box

4. These types of programs are event driven.
a. command line
b. text-based
c. GUI
d. procedural

5. An item that appears in a program’s graphical user interface is known as a
_______________.
a. gadget
b. widget
c. tool
d. iconified object

6. You can use this module in Python to create GUI programs.
a. GUI
b. PythonGui
c. tkinter
d. tgui

7. This widget is an area that displays one line of text.
a. Label
b. Entry
c. TextLine
d. Canvas

8. This widget is an area in which the user may type a single line of input from the key-
board.
a. Label
b. Entry

562 Chapter 14 GUI Programming

c. TextLine
d. Input

9. This widget is a container that can hold other widgets.
a. Grouper
b. Composer
c. Fence
d. Frame

10. This method arranges a widget in its proper position, and it makes the widget visible
when the main window is displayed.
a. pack
b. arrange
c. position
d. show

11. A(n) _______________ is a function or method that is called when a specific event occurs.
a. callback function
b. auto function
c. startup function
d. exception

12. The showinfo function is in this module.
a. tkinter
b. tkinfo
c. sys
d. tkinter.messagebox

13. You can call this method to close a GUI program.
a. The root widget’s destroy method
b. Any widget’s cancel method
c. The sys.shutdown function
d. The Tk.shutdown method

14. You call this method to retrieve data from an Entry widget.
a. get_entry
b. data
c. get
d. retrieve

15. An object of this type can be associated with a Label widget, and any data stored in
the object will be displayed in the Label.
a. StringVar
b. LabelVar
c. LabelValue
d. DisplayVar

16. If there are a group of these in a container, only one of them can be selected at any given
time.
a. Checkbutton
b. Radiobutton
c. Mutualbutton
d. Button

Review Questions 563

True or False

1. The Python language has built-in keywords for creating GUI programs.

2. Every widget has a quit method that can be called to close the program.

3. The data that you retrieve from an Entry widget is always of the int data type.

4. A mutually exclusive relationship is automatically created among all Radiobutton
widgets in the same container.

5. A mutually exclusive relationship is automatically created among all Checkbutton
widgets in the same container.

Short Answer

1. When a program runs in a text-based environment, such as a command line interface,
what determines the order in which things happen?

2. What does a widget’s pack method do?

3. What does the tkinter module’s mainloop function do?

4. If you create two widgets and call their pack methods with no arguments, how will the
widgets be arranged inside their parent widget?

5. How do you specify that a widget should be positioned as far left as possible inside its
parent widget?

6. How do you retrieve data from an Entry widget?

7. How can you use a StringVar object to update the contents of a Label widget?

8. How can you use an IntVar object to determine which Radiobutton has been selected
in a group of Radiobuttons?

9. How can you use an IntVar object to determine whether a Checkbutton has been
selected?

Algorithm Workbench

1. Write a statement that creates a Label widget. Its parent should be self.main_
window and its text shoud be 'Programming is fun!'

2. Assume self.label1 and self.label2 reference two Label widgets. Write code that
packs the two widgets so they are positioned as far left as possible inside their parent
widget.

3. Write a statement that creates a Frame widget. Its parent should be self.main_
window.

4. Write a statement that displays an info dialog box with the title “Program Paused” and
the message “Click OK when you are ready to continue.”

5. Write a statement that creates a Button widget. Its parent should be self.button_
frame, its text should be 'Calculate', and its callback function should be the
self.calculate method.

6. Write a statement that creates a Button widget that closes the program when it is
clicked. Its parent should be self.button_frame, its text should be 'Quit'.

7. Assume the variable data_entry references an Entry widget. Write a statement that
retrieves the data from the widget, converts it to an int, and assigns it to a variable
named var.

564 Chapter 14 GUI Programming

Programming Exercises
1. Name and Address

Write a GUI program that displays your name and address when a button is clicked. The
program’s window should appear as the sketch on the left side of Figure 14-26 when it runs.
When the user clicks the Show Info button, the program should display your name and
address, as shown in the sketch on the right of the figure.

Figure 14-26 Name and address program

2. Latin Translator

Look at the following list of Latin words and their meanings.

Latin English

sinister left

dexter right

medium center

Write a GUI program that translates the Latin words to English. The window should have
three buttons, one for each Latin word. When the user clicks a button, the program dis-
plays the English translation in a label.

3. Miles Per Gallon Calculator

Write a GUI program that calculates a car’s gas mileage. The program’s window should
have Entry widgets that let the user enter the number of gallons of gas the car holds, and
the number of miles it can be driven on a full tank. When a Calculate MPG button is
clicked, the program should display the number of miles that the car may be driven per gal-
lon of gas. Use the following formula to calculate miles-per-gallon:

4. Celsius to Fahrenheit

Write a GUI program that converts Celsius temperatures to Fahrenheit temperatures. The user
should be able to enter a Celsius temperature, click a button, and then see the equivalent
Fahrenheit temperature. Use the following formula to make the conversion:

F is the Fahrenheit temperature and C is the Celsius temperature.

F = 9
5

C + 32

MPG = miles
gallons

QuitShow Info QuitShow Info

Steven Marcus
274 Baily Drive

Waynesville, NC 27999

VideoNote
The Name and
Address Problem

Programming Exercises 565

5. Property Tax

A county collects property taxes on the assessment value of property, which is 60 percent
of the property’s actual value. If an acre of land is valued at $10,000, its assessment value
is $6,000. The property tax is then $0.64 for each $100 of the assessment value. The tax
for the acre assessed at $6,000 will be $38.40. Write a GUI program that displays the
assessment value and property tax when a user enters the actual value of a property.

6. Joe’s Automotive

Joe’s Automotive performs the following routine maintenance services:

• Oil change—$26.00
• Lube job—$18.00
• Radiator flush—$30.00
• Transmission flush—$80.00
• Inspection—$15.00
• Muffler replacement—$100.00
• Tire rotation—$20.00

Write a GUI program with check buttons that allow the user to select any or all of these
services. When the user clicks a button the total charges should be displayed.

7. Long-Distance Calls

A long-distance provider charges the following rates for telephone calls:

Rate Category Rate per Minute

Daytime (6:00 A.M. through 5:59 P.M.) $0.07

Evening (6:00 P.M. through 11:59 P.M.) $0.12

Off-Peak (midnight through 5:59 A.M.) $0.05

Write a GUI application that allows the user to select a rate category (from a set of radio
buttons), and enter the number of minutes of the call into an Entry widget. An info dialog
box should display the charge for the call.

This page intentionally left blank

567

Before you can run Python programs on your computer, you need to download and install
the Python interpreter from www.python.org/download. To run the programs shown in
this book, you need to install Python 3.0 or a later version. This appendix discusses installing
Python for Windows. Python is also available for the Mac and many other systems.

Installing Python
When you execute the Python Windows installer, it’s best to accept all of the default set-
tings by clicking the Next button on each screen. (Answer “Yes” if you are prompted
with any Yes/No questions.) As you perform the installation, take note of the directory
where Python is being installed. It will be something similar to C:\Python31. (The 31
in the path name represents the Python version. At the time of this writing Python 3.1
is the most recent version.) You will need to remember this location after finishing the
installation.

When the installer is finished, the Python interpreter, the IDLE programming environment,
and the Python documentation will be installed on your system. When you click the Start
button and look at your All Programs list you should see a program group named some-
thing like Python 3.1. The program group will contain the following items:

• IDLE (Python GUI)—When you click this item the IDLE programming environment
will execute. IDLE is an integrated development environment that you can use to cre-
ate, edit, and execute Python programs. See Appendix B for a brief introduction to
IDLE.

• Module Docs—This item launches a utility program that allows you to browse doc-
umentation for the modules in the Python standard library.

• Python Command Line—Clicking this item launches the Python interpreter in inter-
active mode.

• Python Manuals—This item opens the Python Manuals in your web browser. The
manuals include tutorials, a reference section for the Python standard library, an in-
depth reference for the Python language, and information on many advanced topics.

• Uninstall Python—This item removes Python from your system.

Installing PythonA
A

P
P

E
N

D
IX

www.python.org/download

568 Appendix A Installing Python

Adding the Python Directory to the Path Variable
If you plan to execute the Python interpreter from a command prompt window, you will
probably want to add the Python directory to the existing contents of your system’s Path
variable. (You saw the name of the Python directory while installing Python. It is something
similar to C:\Python31.) Doing this will allow your system to find the Python interpreter
from any directory when you run it at the command-line.

Use the following instructions to edit the Path variable under Windows 7, Vista, or XP.

Windows 7

• Click the Start button.
• Right-click Computer.
• On the pop-up menu, select Properties.
• In the window that appears next, click Advanced system settings. This displays the

System Properties window.
• Click the Environment Variables... button.
• In the System Variables list, scroll to the Path variable. Select the Path variable and

click the Edit button.
• Add a semicolon to the end of the existing contents and then add the Python directo-

ry path. Click the OK buttons until all the dialog boxes are closed and exit the con-
trol panel.

Windows Vista
• Open the Control Panel.
• Select System and Maintenance.
• Select System.
• Select Advanced System Settings.
• Click the Environment Variables button.
• In the System Variables list, scroll to the Path variable.
• Select the Path variable and click the Edit button. Add a semicolon to the end of the

existing contents and then add the Python directory path.
• Click the OK button.

Windows XP
• Open the Control Panel.
• Double-click the System icon. (If you are running Windows XP in Category View,

click Performance and Maintenance in the Control Panel and then click the System
icon.)

• Click the Advanced tab.
• Click the Environment Variables button. In the System Variables list, scroll to the

Path variable.
• Select the Path variable and click the Edit button. Add a semicolon to the end of the

existing contents and then add the Python directory path.
• Click the OK button.

IDLE is an integrated development environment that combines several development tools
into one program, including the following:

• A Python shell running in interactive mode. You can type Python statements at
the shell prompt and immediately execute them. You can also run complete Python
programs.

• A text editor that color codes Python keywords and other parts of programs.
• A “check module” tool that checks a Python program for syntax errors without run-

ning the program.
• Search tools that allow you to find text in one or more files.
• Text formatting tools that help you maintain consistent indentation levels in a Python

program.
• A debugger that allows you to single-step through a Python program and watch the

values of variables change as each statement executes.
• Several other advanced tools for developers.

The IDLE software is bundled with Python. When you install the Python interpreter,
IDLE is automatically installed as well. This appendix provides a quick introduction
to IDLE, and describes the basic steps of creating, saving, and executing a Python
program.

Starting IDLE and Using the Python Shell
After Python is installed on your system a Python program group will appear in your
Start menu’s program list. One of the items in the program group will be titled IDLE
(Python GUI). Click this item to start IDLE and you will see the Python Shell window
shown in Figure B-1. Inside this window the Python interpreter is running in interactive
mode, and at the top of the window is a menu bar that provides access to all of IDLE’s
tools.

Introduction to IDLEB
A

P
P

E
N

D
IX

Introduction
to IDLE

VideoNote

569

570 Appendix B Introduction to IDLE

The >>> prompt indicates that the interpreter is waiting for you to type a Python statement.
When you type a statement at the >>> prompt and press the Enter key, the statement is
immediately executed. For example, Figure B-2 shows the Python Shell window after three
statements have been entered and executed.

Figure B-1 IDLE shell window

Figure B-2 Statements executed by the Python interpreter

Writing a Python Program in the IDLE Editor 571

When you type the beginning of a multiline statement, such as an if statement or a
loop, each subsequent line is automatically indented. Pressing the Enter key on an empty
line indicates the end of the multiline statement and causes the interpreter to execute it.
Figure B-3 shows the Python Shell window after a for loop has been entered and
executed.

Figure B-3 A multiline statement executed by the Python interpreter

Writing a Python Program in the IDLE Editor
To write a new Python program in IDLE you open a new editing window. As shown in
Figure B-4 you click File on the menu bar, then click New Window. (Alternatively you can
press Ctrl+N.) This opens a text editing window like the one shown in Figure B-5.

572 Appendix B Introduction to IDLE

Figure B-4 The File menu

To open a program that already exists, click File on the menu bar, then Open. Simply
browse to the file’s location and select it, and it will be opened in an editor window.

Figure B-5 A text editing window

Automatic Indentation 573

Color Coding
Code that is typed into the editor window, as well as in the Python Shell window, is col-
orized as follows:

• Python keywords are displayed in orange.
• Comments are displayed in red.
• String literals are displayed in green.
• Defined names, such as the names of functions and classes, are displayed in blue.
• Built-in functions are displayed in purple.

Figure B-6 shows an example of the editing window containing colorized Python code.

Figure B-6 Colorized code in the editing window

Automatic Indentation
The IDLE editor has features that help you to maintain consistent indentation in your
Python programs. Perhaps the most helpful of these features is automatic indentation.
When you type a line that ends with a colon, such as an if clause, the first line of a loop,
or a function header, and then press the Enter key, the editor automatically indents the lines

TIP: You can change IDLE’s color settings by clicking Options on the menu bar, then
clicking Configure IDLE. Select the Highlighting tab at the top of the dialog box, and
you can specify colors for each element of a Python program.

574 Appendix B Introduction to IDLE

that are entered next. For example, suppose you are typing the code shown in Figure B-7.
After you press the Enter key at the end of the line marked 1 , the editor will automatically
indent the lines that you type next. Then, after you press the Enter key at the end of the line
marked 2 , the editor indents again. Pressing the Backspace key at the beginning of an
indented line cancels one level of indentation.

Figure B-7 Lines that cause automatic indentation

1

2

By default, IDLE indents four spaces for each level of indentation. It is possible to change
the number of spaces by clicking Options on the menu bar, then clicking Configure IDLE.
Make sure Fonts/Tabs is selected at the top of the dialog box, and you will see a slider bar
that allows you to change the number of spaces used for indentation width. However,
because four spaces is the standard width for indentation in Python, it is recommended that
you keep this setting.

Saving a Program
In the editor window you can save the current program by performing any of these opera-
tions from the File menu:

• Save
• Save As
• Save Copy As

The Save and Save As operations work just as they do in any Windows application. The
Save Copy As operation works like Save As, but it leaves the original program in the edi-
tor window.

Running a Program 575

Running a Program
Once you have typed a program into the editor, you can run it by pressing the F5 key, or
as shown in Figure B-8, by clicking Run on the editor window’s menu bar, then Run
Module. If the program has not been saved since the last modification was made, you will
see the dialog box shown in Figure B-9. Click OK to save the program. When the pro-
gram runs you will see its output displayed in IDLE’s Python Shell window, as shown in
Figure B-10.

Figure B-8 The editor window’s Run menu

Figure B-9 Save confirmation dialog box

Other Resources
This appendix has provided an overview for using IDLE to create, save, and execute pro-
grams. IDLE provides many more advanced features. To read about additional capabilities,
see the official IDLE documentation at www.python.org/idle.

576 Appendix B Introduction to IDLE

If a program contains a syntax error, when you run the program you will see the dialog box
shown in Figure B-11. After you click the OK button the editor will highlight the location
of the error in the code. If you want to check the syntax of a program without trying to run
it, you can click Run on the menu bar, then Check Module. Any syntax errors that are
found will be reported.

Program output

Figure B-10 Output displayed in the Python Shell window

Figure B-11 Dialog box reporting a syntax error

www.python.org/idle

The following table lists the ASCII (American Standard Code for Information Interchange)
character set, which is the same as the first 127 Unicode character codes. This group of
character codes is known as the Latin Subset of Unicode. The code columns show charac-
ter codes and the character columns show the corresponding characters. For example, the
code 65 represents the letter A. Note that the first 31 codes, and code 127, represent con-
trol characters that are not printable.

The ASCII Character SetC
A

P
P

E
N

D
IX

Code Character Code Character Code Character Code Character Code Character

0 NUL 26 SUB 52 4 78 N 104 h
1 SOH 27 Escape 53 5 79 O 105 i
2 STX 28 FS 54 6 80 P 106 j
3 ETX 29 GS 55 7 81 Q 107 k
4 EOT 30 RS 56 8 82 R 108 l
5 ENQ 31 US 57 9 83 S 109 m
6 ACK 32 (Space) 58 : 84 T 110 n
7 BEL 33 ! 59 ; 85 U 111 o
8 Backspace 34 “ 60 < 86 V 112 p
9 HTab 35 # 61 = 87 W 113 q
10 Line Feed 36 $ 62 > 88 X 114 r
11 VTab 37 % 63 ? 89 Y 115 s
12 Form Feed 38 & 64 @ 90 Z 116 t
13 CR 39 ‘ 65 A 91 [117 u
14 SO 40 (66 B 92 \ 118 v
15 SI 41) 67 C 93] 119 w
16 DLE 42 * 68 D 94 ^ 120 x
17 DC1 43 + 69 E 95 — 121 y
18 DC2 44 ' 70 F 96 ` 122 z
19 DC3 45 - 71 G 97 a 123 {
20 DC4 46 . 72 H 98 b 124 |
21 NAK 47 / 73 I 99 c 125 }
22 SYN 48 0 74 J 100 d 126 ~
23 ETB 49 1 75 K 101 e 127 DEL
24 CAN 50 2 76 L 102 f
25 EM 51 3 77 M 103 g

577

This page intentionally left blank

Chapter 1
1.1 A program is a set of instructions that a computer follows to perform a task.

1.2 Hardware is all the physical devices, or components, of which a computer is
made.

1.3 The central processing unit (CPU), main memory, secondary storage devices,
input devices, and output devices

1.4 The CPU

1.5 Main memory

1.6 Secondary storage

1.7 Input device

1.8 Output device

1.9 The operating system

1.10 A utility program

1.11 Application software

1.12 One byte

1.13 A bit

1.14 The binary numbering system

1.15 It is an encoding scheme that uses a set of 128 numeric codes to represent the
English letters, various punctuation marks, and other characters. These
numeric codes are used to store characters in a computer’s memory. (ASCII
stands for the American Standard Code for Information Interchange.)

1.16 Unicode

1.17 Digital data is data that is stored in binary, and a digital device is any device
that works with binary data.

579

Answers to CheckpointsD
A

P
P

E
N

D
IX

580 Appendix D Answers to Checkpoints

1.18 Machine language

1.19 Main memory, or RAM

1.20 The fetch-decode-execute cycle

1.21 It is an alternative to machine language. Instead of using binary numbers for
instructions, assembly language uses short words that are known as mnemonics.

1.22 A high-level language

1.23 Syntax

1.24 A compiler

1.25 An interpreter

1.26 A syntax error

Chapter 2
2.1 Any person, group, or organization that is asking you to write a program

2.2 A single function that the program must perform in order to satisfy the
customer

2.3 A set of well-defined logical steps that must be taken to perform a task

2.4 An informal language that has no syntax rules and is not meant to be
compiled or executed. Instead, programmers use pseudocode to create
models, or “mock-ups,” of programs.

2.5 A diagram that graphically depicts the steps that take place in a program

2.6 Ovals are terminal symbols. Parallelograms are either output or input
symbols. Rectangles are processing symbols.

2.7 print('Jimmy Smith')

2.8 print("Python's the best!")

2.9 print('The cat said "meow"')

2.10 A name that references a value in the computer’s memory

2.11 99bottles is illegal because it begins with a number. r&d is illegal because
the & character is not allowed.

2.12 No, it is not because variable names are case sensitive.

2.13 It is invalid because the variable that is receiving the assignment (in this case
amount) must appear on the left side of the = operator.

2.14 The value is val.

2.15 value1 will reference an int. value2 will reference a float.
value3 will reference a float. value4 will reference an int.
value5 will reference an str (string).

Appendix D Answers to Checkpoints 581

2.16 0

2.17 last_name = input("Enter the customer's last name: ")

2.18 sales = float(input('Enter the sales for the week: '))

2.19 Here is the completed table:

2.20 4

2.21 1

Chapter 3
3.1 A function is a group of statements that exist within a program for the

purpose of performing a specific task.

3.2 A large task is divided into several smaller tasks that are easily performed.

3.3 If a specific operation is performed in several places in a program, a function
can be written once to perform that operation and then be executed any time
it is needed.

3.4 Functions can be written for the common tasks that are needed by the
different programs. Those functions can then be incorporated into each
program that needs them.

3.5 When a program is developed as a set of functions in which each performs an
individual task, then different programmers can be assigned the job of
writing different functions.

3.6 A function definition has two parts: a header and a block. The header
indicates the starting point of the function, and the block is a list of
statements that belong to the function.

3.7 To call a function means to execute the function.

3.8 When the end of the function is reached, the computer returns back to the
part of the program that called the function, and the program resume
execution at that point.

3.9 Because the Python interpreter uses the indentation to determine where a
block begins and ends

Expression Value

6 + 3 * 5 21

12 / 2 - 4 2

9 + 14 * 2 - 6 31

(6 + 2) * 3 24

14 / (11 - 4) 2

9 + 12 * (8 - 3) 69

582 Appendix D Answers to Checkpoints

3.10 A local variable is a variable that is declared inside a function. It belongs to
the function in which it is declared, and only statements in the same function
can access it.

3.11 The part of a program in which a variable may be accessed

3.12 Yes, it is permissible.

3.13 Arguments

3.14 Parameters

3.15 A parameter variable’s scope is the entire function in which the parameter is
declared.

3.16 No, it does not.

3.17 a. passes by keyword argument
b. passes by position

3.18 The entire program

3.19 Here are three:
• Global variables make debugging difficult. Any statement in a program

can change the value of a global variable. If you find that the wrong value
is being stored in a global variable, you have to track down every state-
ment that accesses it to determine where the bad value is coming from. In
a program with thousands of lines of code, this can be difficult.

• Functions that use global variables are usually dependent on those vari-
ables. If you want to use such a function in a different program, you will
most likely have to redesign it so it does not rely on the global variable.

• Global variables make a program hard to understand. A global variable
can be modified by any statement in the program. If you are to understand
any part of the program that uses a global variable, you have to be aware
of all the other parts of the program that access the global variable.

3.20 A global constant is a name that is available to every function in the
program. It is permissible to use global constants. Because their value cannot
be changed during the program’s execution, you do not have to worry about
its value being altered.

Chapter 4
4.1 A logical design that controls the order in which a set of statements execute

4.2 It is a program structure that can execute a set of statements only under
certain circumstances.

4.3 A decision structure that provides a single alternative path of execution. If the
condition that is being tested is true, the program takes the alternative path.

4.4 An expression that can be evaluated as either true or false

4.5 You can determine whether one value is greater than, less than, greater than
or equal to, less than or equal to, equal to, or not equal to another value.

Appendix D Answers to Checkpoints 583

4.6 if y == 20:
x = 0

4.7 if sales >= 10000:
commissionRate = 0.2

4.8 A dual alternative decision structure has two possible paths of execution; one
path is taken if a condition is true, and the other path is taken if the
condition is false.

4.9 if-else

4.10 When the condition is false

4.11 z is not less than a.

4.12 Boston
New York

4.13 if number == 1:
print('One')

elif number == 2:
print('Two')

elif number == 3:
print('Three')

else:
print('Unknown')

4.14 It is an expression that is created by using a logical operator to combine two
Boolean subexpressions.

4.15 F
T
F
F
T
T
T
F
F
T

4.16 T
F
T
T

4.17 The and operator: If the expression on the left side of the and operator is
false, the expression on the right side will not be checked.
The or operator: If the expression on the left side of the or operator is true,
the expression on the right side will not be checked.

4.18 if speed >= 0 and speed <= 200:
print('The number is valid')

584 Appendix D Answers to Checkpoints

4.19 if speed < 0 or speed > 200:
print('The number is not valid')

4.20 True or False

4.21 A variable that signals when some condition exists in the program

Chapter 5
5.1 A structure that causes a section of code to repeat

5.2 A loop that uses a true/false condition to control the number of times that it
repeats

5.3 A loop that repeats a specific number of times

5.4 An execution of the statements in the body of the loop

5.5 Before

5.6 None. The condition count < 0 will be false to begin with.

5.7 A loop that has no way of stopping and repeats until the program is
interrupted.

5.8 for x in range(6):
print('I love to program!')

5.9 0
1
2
3
4
5

5.10 2
3
4
5

5.11 0
100
200
300
400
500

5.12 10
9
8
7
6

5.13 A variable that is used to accumulate the total of a series of numbers

Appendix D Answers to Checkpoints 585

5.14 Yes, it should be initialized with the value 0. This is because values are added
to the accumulator by a loop. If the accumulator does not start at the value
0, it will not contain the correct total of the numbers that were added to it
when the loop ends.

5.15 15

5.16 15
5

5.17 a. quantity += 1
b. days_left -= 5
c. price *= 10
d. price /= 2

5.18 A sentinel is a special value that marks the end of a list of items.

5.19 A sentinel value must be unique enough that it will not be mistaken as a
regular value in the list.

5.20 It means that if bad data (garbage) is provided as input to a program, the
program will produce bad data (garbage) as output.

5.21 When input is given to a program, it should be inspected before it is
processed. If the input is invalid, then it should be discarded and the user
should be prompted to enter the correct data.

5.22 The input is read, and then a pretest loop is executed. If the input data is
invalid, the body of the loop executes. In the body of the loop, an error
message is displayed so the user will know that the input was invalid, and
then the input read again. The loop repeats as long as the input is invalid.

5.23 It is the input operation that takes place just before an input validation loop.
The purpose of the priming read is to get the first input value.

5.24 None

Chapter 6
6.1 The difference is that a value returning function returns a value back to the

statement that called it. A simple function does not return a value.

6.2 A prewritten function that performs some commonly needed task

6.3 The term “black box” is used to describe any mechanism that accepts input,
performs some operation (that cannot be seen) using the input, and produces
output.

6.4 It assigns a random integer in the range of 1 through 100 to the variable x.

6.5 It prints a random integer in the range of 1 through 20.

6.6 It prints a random integer in the range of 10 through 19.
print(random.randrange(10, 20))

6.7 It prints a random floating-point number in the range of 0.0 up to, but not
including, 1.0.

586 Appendix D Answers to Checkpoints

6.8 It prints a random floating-point number in the range of 0.1 through 0.5.

6.9 It uses the system time, retrieved from the computer’s internal clock.

6.10 If the same seed value were always used, the random number functions
would always generate the same series of pseudorandom numbers.

6.11 What is the purpose of the return statement in a function?

6.12 Look at the following function definition:
def do_something(number):

return number * 2
a. do_something
b. It returns a value that is twice the argument passed to it.
c. 20

6.13 A function that returns either True or False

6.14 import math

6.15 square_root = math.sqrt(100)

6.16 angle = math.radians(45)

Chapter 7
7.1 A file to which a program writes data. It is called an output file because the

program sends output to it.

7.2 A file from which a program reads data. It is called an input file because the
program receives input from it.

7.3 Open the file. (2) Process the file. (3) Close the file.

7.4 Text and binary. A text file contains data that has been encoded as text using
a scheme such as ASCII. Even if the file contains numbers, those numbers are
stored in the file as a series of characters. As a result, the file may be opened
and viewed in a text editor such as Notepad. A binary file contains data that
has not been converted to text. As a consequence, you cannot view the
contents of a binary file with a text editor.

7.5 Sequential and direct access. When you work with a sequential access file,
you access data from the beginning of the file to the end of the file. When
you work with a direct access file, you can jump directly to any piece of data
in the file without reading the data that comes before it.

7.6 The file’s name on the disk and the name of a variable that references a file
object.

7.7 The file’s contents are erased.

7.8 Opening a file creates a connection between the file and the program. It also
creates an association between the file and a file object.

Appendix D Answers to Checkpoints 587

7.9 Closing a file disconnects the program from the file.

7.10 A file’s read position marks the location of the next item that will be read
from the file. When an input file is opened, its read position is initially set to
the first item in the file.

7.11 You open the file in append mode. When you write data to a file in append
mode, the data is written to the end of the file’s existing contents.

7.12 outfile = open('numbers.txt', 'w')
for num in range(1, 11):

outfile.write(str(num) + '\n')
outfile.close()

7.13 The readline method returns an empty string ('') when it has attempted to
read beyond the end of a file.

7.14 infile = open('numbers.txt', 'r')
line = infile.readline()
while line != '':

print(line)
line = infile.readline()

infile.close()

7.15 infile = open('data.txt', 'r')
for line in infile:

print(line)
infile.close()

7.16 A record is a complete set of data that describes one item, and a field is a
single piece of data within a record.

7.17 You copy all the original file’s records to the temporary file, but when you
get to the record that is to be modified, you do not write its old contents to
the temporary file. Instead, you write its new, modified values to the
temporary file. Then, you finish copying any remaining records from the
original file to the temporary file.

7.18 You copy all the original file’s records to the temporary file, except for the
record that is to be deleted. The temporary file then takes the place of the
original file. You delete the original file and rename the temporary file, giving
it the name that the original file had on the computer’s disk.

7.19 An exception is an error that occurs while a program is running. In most
cases, an exception causes a program to abruptly halt.

7.20 The program halts.

7.21 IOError

7.22 ValueError

588 Appendix D Answers to Checkpoints

Chapter 8
8.1 [1, 2, 99, 4, 5]

8.2 [0, 1, 2]

8.3 [10, 10, 10, 10, 10]

8.4 1
3
5
7
9

8.5 4

8.6 Use the built-in len function.

8.7 [1, 2, 3]
[10, 20, 30]
[1, 2, 3, 10, 20, 30]

8.8 [1, 2, 3]
[10, 20, 30, 1, 2, 3]

8.9 What will the following code display?
numbers = [1, 2, 3, 4, 5]
my_list = numbers[1:3]
print(my_list)

8.10 [2, 3]

8.11 [1]

8.12 [1, 2, 3, 4, 5]

8.13 [3, 4, 5]

8.14 Jasmine's family:
['Jim', 'Jill', 'John', 'Jasmine']

8.15 The remove method searches for and removes an element containing a
specific value. The del statement removes an element at a specific index.

8.16 You can use the built-in min and max functions.

8.17 You would use statement b, names.append('Wendy'). This is because
element 0 does not exist. If you try to use statement a, an error will occur.

8.18 Describe the following list methods:
a. The index method searches for an item in the list and returns the index of

the first element containing that item.
b. The insert method inserts an item into the list at a specified index.
c. The sort method sorts the items in the list to appear in ascending order.
d. The reverse method reverses the order of the items in the list.

8.19 The list contains 4 rows and 2 columns.

Appendix D Answers to Checkpoints 589

8.20 mylist = [[0, 0, 0, 0], [0, 0, 0, 0],
[0, 0, 0, 0], [0, 0, 0, 0]]

8.21 for r in range(4):
for c in range(2):

print(numbers[r][c])

8.22 The primary difference between tuples and lists is that tuples are immutable.
That means that once a tuple is created, it cannot be changed.

8.23 Here are three reasons:
• Processing a tuple is faster than processing a list, so tuples are good

choices when you are processing lots of data and that data will not be
modified.

• Tuples are safe. Because you are not allowed to change the contents of a
tuple, you can store data in one and rest assured that it will not be modi-
fied (accidentally or otherwise) by any code in your program.

• There are certain operations in Python that require the use of a tuple.

8.24 my_tuple = tuple(my_list)

8.25 my_list = list(my_tuple)

Chapter 9
9.1 for letter in name:

print(letter)

9.2 0

9.3 9

9.4 An IndexError exception will occur if you try to use an index that is out of
range for a particular string.

9.5 Use the built-in len function.

9.6 The second statement attempts to assign a value to an individual character in
the string. Strings are immutable, however, so the expression animal[0]
cannot appear on the left side of an assignment operator.

9.7 cde

9.8 defg

9.9 abc

9.10 abcdefg

9.11 if 'd' in mystring:
print('Yes, it is there.')

9.12 little = big.upper()

590 Appendix D Answers to Checkpoints

9.13 if ch.isdigit():
print('Digit')

else:
print('No digit')

9.14 a A

9.15 again = input('Do you want to repeat ' + \
'the program or quit? (R/Q) ')

while again.upper() != 'R' and again.upper() != 'Q':
again = input('Do you want to repeat the ' +

'program or quit? (R/Q) ')

9.16 $

9.17 for letter in mystring:
if letter.isupper():

count += 1

9.18 my_list = days.split()

9.19 my_list = values.split('$')

Chapter 10
10.1 Key and value

10.2 The key

10.3 The string 'start' is the key, and the integer 1472 is the value.

10.4 It stores the key-value pair 'id' : 54321 in the employee dictionary.

10.5 ccc

10.6 You can use the in operator to test for a specific key.

10.7 It deletes the element that has the key 654.

10.8 3

10.9 1
2
3

10.10 The pop method accepts a key as an argument, returns the value that is
associated with that key, and removes that key-value pair from the
dictionary. The popitem method returns a randomly selected key-value pair,
as a tuple, and removes that key-value pair from the dictionary.

10.11 It returns all a dictionary’s keys and their associated values as a sequence of
tuples.

10.12 It returns all the keys in a dictionary as a sequence of tuples.

10.13 It returns all the values in the dictionary as a sequence of tuples.

Appendix D Answers to Checkpoints 591

10.14 Unordered

10.15 No

10.16 You call the built-in set function.

10.17 The set will contain these elements (in no particular order): 'J', 'u', 'p',
'i', 't', 'e', and 'r'.

10.18 The set will contain one element: 25.

10.19 The set will contain these elements (in no particular order): 'w', ' ', 'x',
'y', and 'z'.

10.20 The set will contain these elements (in no particular order): 1, 2, 3, and 4.

10.21 The set will contain these elements (in no particular order): 'www', 'xxx',
'yyy', and 'zzz'.

10.22 You pass the set as an argument to the len function.

10.23 The set will contain these elements (in no particular order): 10, 9, 8, 1, 2, and 3.

10.24 The set will contain these elements (in no particular order): 10, 9, 8, 'a',
'b', and 'c'.

10.25 If the specified element to delete is not in the set, the remove method raises a
KeyError exception, but the discard method does not raise an exception.

10.26 You can use the in operator to test for the element.

10.27 {10, 20, 30, 100, 200, 300}

10.28 {3, 4}

10.29 {1, 2}

10.30 {5, 6}

10.31 {'a', 'd'}

10.32 set2 is a subset of set1, and set1 is a superset of set2.

10.33 The process of converting the object to a stream of bytes that can be saved to
a file for later retrieval.

10.34 'wb'

10.35 'rb'

10.36 The pickle module

10.37 pickle.dump

10.38 pickle.load

Chapter 11
11.1 An object is a software entity that contains both data and procedures.

11.2 Encapsulation is the combining of data and code into a single object.

592 Appendix D Answers to Checkpoints

11.3 When an object’s internal data is hidden from outside code and access to that
data is restricted to the object’s methods, the data is protected from
accidental corruption. In addition, the programming code outside the object
does not need to know about the format or internal structure of the object’s
data.

11.4 Public methods can be accessed by entities outside the object. Private
methods cannot be accessed by entities outside the object. They are designed
to be accessed internally.

11.5 The metaphor of a blueprint represents a class.

11.6 Objects are the cookies.

11.7 Its purpose is to initialize an object’s data attributes. It executes immediately
after the object is created.

11.8 When a method executes, it must have a way of knowing which object’s data
attributes it is supposed to operate on. That’s where the self parameter
comes in. When a method is called, Python automatically makes its self
parameter reference the specific object that the method is supposed to
operate on.

11.9 By starting the attribute’s name with two underscores

11.10 It returns a string representation of the object.

11.11 By passing the object to the built-in str method

11.12 An attribute that belongs to a specific instance of a class

11.13 10

11.14 A method that returns a value from a class’s attribute but does not change it
is known as an accessor method. A method that stores a value in a data
attribute or changes the value of a data attribute in some other way is known
as a mutator method.

11.15 The top section is where you write the name of the class. The middle section
holds a list of the class’s fields. The bottom section holds a list of the class’s
methods.

11.16 A written description of the real-world objects, parties, and major events
related to the problem

11.17 If you adequately understand the nature of the problem you are trying to
solve, you can write a description of the problem domain yourself. If you do
not thoroughly understand the nature of the problem, you should have an
expert write the description for you.

11.18 First, identify the nouns, pronouns, and pronoun phrases in the problem
domain description. Then, refine the list to eliminate duplicates, items that
you do not need to be concerned with in the problem, items that represent
objects instead of classes, and items that represent simple values that can be
stored in variables.

Appendix D Answers to Checkpoints 593

11.19 The things that the class is responsible for knowing and the actions that the
class is responsible for doing

11.20 In the context of this problem, what must the class know? What must the
class do?

11.21 No, not always

Chapter 12
12.1 A superclass is a general class and a subclass is a specialized class.

12.2 When one object is a specialized version of another object, there is an “is a”
relationship between them. The specialized object “is a” version of the
general object.

12.3 It inherits all the superclass’s attributes.

12.4 Bird is the superclass and Canary is the subclass.

12.5 I’m a vegetable.
I’m a potato.

Chapter 13
13.1 A recursive algorithm requires multiple method calls. Each method call

requires several actions to be performed by the JVM. These actions include
allocating memory for parameters and local variables and storing the address
of the program location where control returns after the method terminates.
All these actions are known as overhead. In an iterative algorithm, which
uses a loop, such overhead is unnecessary.

13.2 A case in which the problem can be solved without recursion

13.3 Cases in which the problem is solved using recursion

13.4 When it reaches the base case

13.5 In direct recursion, a recursive method calls itself. In indirect recursion,
method A calls method B, which in turn calls method A.

Chapter 14
14.1 The part of a computer and its operating system with which the user

interacts

14.2 A command line interface typically displays a prompt, and the user types a
command, which is then executed.

14.3 The program

594 Appendix D Answers to Checkpoints

14.4 A program that responds to events that take place, such as the user clicking a
button

14.5 a. Label—An area that displays one line of text or an image
b. Entry—An area in which the user may type a single line of input from the

keyboard
c. Button—A button that can cause an action to occur when it is clicked
d. Frame—A container that can hold other widgets

14.6 You create an instance of the tkinter module’s Tk class.

14.7 This function runs like an infinite loop until you close the main window.

14.8 The pack method arranges a widget in its proper position, and it makes the
widget visible when the main window is displayed.

14.9 One will be stacked on top of the other.

14.10 side='left'

14.11 You use an Entry widget’s get method to retrieve the data that the user has
typed into the widget.

14.12 It is a string.

14.13 tkinter

14.14 Any value that is stored in the StringVar object will automatically be
displayed in the Label widget.

14.15 You would use radio buttons.

14.16 You would use check buttons.

14.17 When you create a group of Radiobuttons, you associate them all with the
same IntVar object. You also assign a unique integer value to each
Radiobutton widget. When one of the Radiobutton widgets is selected, it
stores its unique integer value in the IntVar object.

14.18 You associate a different IntVar object with each Checkbutton. When a
Checkbutton is selected, its associated IntVar object will hold the value 1.
When a Checkbutton is deselected, its associated IntVar object will hold
the value 0.

595

Symbols
" (double-quote marks), 37
' (single-quote marks), 37
- (subtraction) operator, 54
""" or ''' (triple quotes), 38
/ (division) operator, 54, 56
// (integer division) operator,

54, 56
/= operator, 181
\ (continuation line character), 64
+ operator

defined, 54
displaying multiple items with,

68
in list concatenation, 301
precedence, 57

+= operator
defined, 181
in list concatenation, 302
in string concatenation, 347

= (assignment) operator, 121
-= operator, 181
== operator

assignment operator versus,
121

defined, 120
in string comparisons, 130
use example, 123
value comparison, 121

!= operator
defined, 120
example use, 121
use example, 123

character, 38
% (remainder) operator

defined, 54, 60
function of, 223
use example, 60

%= operator, 181

& operator, for intersection of
sets, 400

* operator
multiplication, 54
repetition, 297

** (exponent) operator, 54, 59–60
*= operator, 181
^ operator, 401
{} (curly braces), 372
< operator

defined, 120
in string comparisons, 133

<= operator
defined, 120
relationship testing, 121
in subset determination, 402

> operator
defined, 120
in string comparisons, 132
use example, 120, 121–122

>= operator
defined, 120
relationship testing, 121
in superset determination, 402

>>> prompt, 21, 22

A
Accessor methods, 447
Acos() function, 227
Actions

conditionally executed, 118
in decision structures, 119

Ada programming language, 17
Add method, 396
Addition (+) operator

defined, 54
displaying multiple items with,

68
precedence, 57

Algebraic expressions, 61–62
Algorithms

defined, 33
example, 33
recursive, 512, 513,

516–523
And operator

defined, 142
false, 144
short-circuit evaluation, 144
truth table, 143
use example, 143

Append method
defined, 307, 308
use example, 308–309

Append mode, 252
Appending data, 252
Application software, 7
Arguments

accepting as, 314
accepting list as, 313
defined, 36, 97
keyword, 105–107
passing objects as, 450–451
passing to functions, 97–107
positional, 107
as step values, 171

Arrays, 297
ASCII

character set, 12, 577
defined, 11
in string comparisons,

131, 132
Asin() function, 227
Assemblers, 16
Assembly language, 16
Assignment operators

== operator versus, 121
augmented, 181–182

INDEX

596 INDEX

Assignment statements
creating variables with,

40–43
example, 40
format, 41
multiple assignment, 383
variable placement, 181

Atan() function, 227
Attributes. See Data attributes
Augmented assignment

operators, 181–182
Automobile class, 485–489
Averages

calculating, 58–59
list value, 318–319

B
BankAccount class example,

437–442
Base case, 513, 516
Base classes, 484
BASIC, 17
Binary files, 241
Binary numbering system, 9–10
Bits

all set to 0, 11
all set to 1, 11
defined, 8
patterns, 9, 10

Black boxes, library functions as,
204

Blank lines, in blocks, 89
Blocks

blank lines, 89
defined, 84
indentation, 88–89
nested, 124–125
statement format, 84

Bool data type, 149
Boolean expressions

defined, 119–120
if statement testing, 120
with input validation loops,

187
with logical operators, 142
with relational operators, 120

Boolean functions
in code validation, 224
defined, 223
uses, 223

Boolean values, returning,
223–224

Boolean variables, 149
Buffers, 245

Button widget
defined, 532
use example, 540–541
uses, 540

Buttons
check, 558–560
Convert, 544
OK, 540, 557
Quit, 542–543, 544
radio, 554–557

Bytes
in data storage, 9
defined, 8
for large numbers, 11

C
C# programming language, 17
Calculations

average, 58–59
math expressions, 53
math operators, 53, 54
percentage, 55–56
performing, 53–65

Callback functions
defined, 540
as event handlers, 540
Radiobuttons with, 557

Calling functions. See also
Functions

defined, 36, 85
examples of, 87
general format, 36
illustrated, 86
in loops, 166–167
program control and, 88

CamelCase, 44
Canvas widget, 532
Car class, 472–473, 489
Case-sensitive comparisons, 357
Cat class, 500
C/C++ programming languages,

17
CD class, 495
CD drives, 6
CDs (compact discs), 6
Ceil() function, 227
Central processing unit (CPU)

as computer’s brain, 13
defined, 3
fetch-decode-execute cycle, 15
instruction set, 14
microprocessor, 3
operations, 13

Change_me function, 104–105

Character sets, ASCII, 577
Characters

encoding schemes, 11–12
escape, 67–68
extracting from string, 350–352
line continuation, 64
newline, 65–66
password, validating, 358–361
retrieving copy of, 344
selecting range of, 349–350
space, 51
storage, 11–12
string, accessing, 342–346

Charts, IPO, 218–219
Check buttons

defined, 558
illustrated, 558
use example, 558–560

Checkbutton widget
creating, 558
defined, 532
use example, 558–560

Class definitions
Coin example, 427–432
defined, 426
organization, 435

Classes. See also Instances
Automobile, 485–489
BankAccount, 437–442
base, 484
Car, 472–473, 489
Cat, 500
CD, 495
CellPhone, 445–447
Checkbutton, 558
Coin, 427–432
concept of, 425
Contact, 454–464
cookie cutter metaphor,

425, 426
Customer, 471–472
defined, 425
derived, 484
designing, 464–475
Dog, 499–500
finding, in problems, 465–470
inheritance, 483–507
IntVar, 555
Mammal, 498–499
polymorphism, 498–504
questions for, 471
Radiobutton, 554
responsibilities, identifying,

470–475

INDEX 597

SavingsAccount, 494, 495
ServiceQuote, 473–475
storing in modules, 435–437
SUV, 490–491
Truck, 489–490
UML layout, 465

Clear method, 379–380, 398
Close method, 245, 408
Closing files, 241
COBOL, 17
Code

debugging, 32
defined, 19
modularized program, 73
responding to exceptions, 278
reuse, 73
validation, 224

Coin class example,
427–432

Command line interfaces,
529–530

Comments
defined, 38
end-of-line, 39–40
importance of, 40

Comparisons, string
< operator in, 133
== operator in, 130
> operator in, 132
ASCII and, 131, 132
case-insensitive, 131
case-sensitive, 131, 357, 373
character, 132–133
defined, 130
example, 130
with in and not in

operators, 374
relational operators, 132

Compilers, 18
Computers

components, 2–6
components illustration, 3
CPU, 3–4
data storage, 8–13
ENIAC, 3, 4
input devices, 6
main memory, 5
output devices, 6
secondary storage devices, 5–6
user interface, 529

Concatenation
+= operator in, 302, 347
defined, 346
list, 301–302

newline to string, 249–250
string, 346–347

Conditional execution
defined, 118
if-else statement, 126

Condition-controlled loops.
See also Loops

beginning of, 159
calling functions in, 166–167
conditions tested by, 159, 161
defined, 158
flowchart, 159, 162
general format, 159
infinite, 165
logic, 159
parts of, 159
as pretest loop, 162–163
program design with, 163–165
while loop, 158–167

Constants, global, 109–111
Contact class example, 454–464
Contact_manager.py
add function, 460
change function, 461
defined, 456
delete function, 461–462
get_menu_choice function,

459
load_contacts function, 458
look_up function, 459–460
main function, 456–457
output, 462–464
save_contacts function, 462
while loop, 457

Continuation line character (, 64
Control structures, 117
Convert button, 544
Convert method, 549
Cookies, 240
Copying lists, 314–316
Cos() function, 227
Count-controlled loops. See also

Loops
defined, 158, 167
designing, 174–176
examples, 168–171
flowcharts, 174
general format, 168
iterations, 168
for loop, 167–178
range function with, 170–172
target variables, 169, 172–174
uses, 167–168

Customer class, 471–472

D
Data

appending to files, 252
binary file, 241
digital, 12
hiding, 422
output, 65–73
processing, with loops,

256–263
reading from files, 241,

246–249
text file, 241
writing to files, 240, 244–246

Data attributes
defined, 422
hidden, 423
hiding, 432–435
initializing, 428
instance, 442
methods and, 424
as values, 424

Data storage, 8–13
characters, 11–12
digital data, 12
music, 13
numbers, 9–11
numbers, advanced, 12
pictures, 12

Data types
bool, 149
conversion, 63–64
defined, 46
dictionary, mixing, 376–377
float, 47, 63–64
int, 47, 64
numeric, 46–47
str, 47–48

Debugging
defined, 32
global variables and, 108–109

Decision structures
actions performed in, 119
combining sequence structures

with, 134
defined, 118
dual alternative, 125, 126
example flowcharts, 122
exiting, 118
in flowcharts, 118
if statement, 117–125
if-elif-else statement,

140–141
if-else statement, 125–129
nested, 134–142

598 INDEX

Decision (continued)
sequence structure nested

inside, 135
simple illustrated example,

118
single alternative, 118

Degrees() function, 227
Del statement, 313
Depth of recursion, 512
Derived classes, 484
Dialog boxes

defined, 530
illustrated, 530
info, 540–543
title bar, 540

Dict() method, 378
Dictionaries

creating, 372
data types, mixing, 376–377
defined, 371
elements, adding, 374
elements, deleting, 375,

379–380
elements, display order, 372
elements, number of,

375–376
empty, creating, 377–378
iteration, 378–379
keys, 371, 372
keys, returning, 380–381
key-value pairs, 371
methods, 379–384
names and birthdays storage

example, 387–393
parts of, 371
simulate deck of cards

example, 384–387
storing objects in, 454–464
values, 371, 372–374
values, getting, 380

Dictionary views
defined, 380
elements, 380
keys returned as, 381
values returned as, 383–384

Difference method, 400
Difference of sets

finding, 400–401
symmetric, 401

Digital data, 12
Digital devices, 12
Direct access files, 242
Direct recursion, 516
Discard method, 397

Disk drives
defined, 5
program storage on, 14

Display_data function, 412,
450

Divide and conquer, 82
Division

/ operator, 54, 56, 57
floating-point, 56
integer, 54, 56

Dog class, 499–500
Dot notation, 205
Dual alternative decision

structure
defined, 125
illustrated, 126

Dump method, 407
DVD drives, 6
DVDs (digital versatile discs), 6

E
E variable, 227
Else clause, with try/except

statement, 287–288
Else suite, 287
Encapsulation, 422
End of file

detecting, 257–259
logic, 258
while loop, 260

End-of-line comments, 39–40
Endswith method, 357, 358
ENIAC computer, 3, 4
Entry widget

defined, 532, 543
getting input with, 543–546
use example, 544–546
uses, 543–544

Error handlers, 187
Error messages

default, displaying, 285–286
traceback, 277

Error traps, 187
Errors. See Exceptions
Escape characters, 67, 249
Event handlers, callback

functions as, 540
Exception handling

defined, 278
illustrated, 280
multiple exceptions, 282–284
with try/except statement,

276, 278–279
Exception objects, 285

Exceptions
catching all with one except

clause, 284–285
code response to, 278
default error message display,

285–286
defined, 53, 276
IndexError, 298–299, 345
IOError, 281, 282, 283, 288
KeyError, 375, 398
multiple, 282–284
preventing, 277
unhandled, 288–289
ValueError, 285–286,

288, 312
ZeroDivisionError, 288

Execution
in fetch-decode-execute cycle,

15
function, 85
pausing, 94
Python interpreter, 568
try/except statement, 279
while loop, 159

Exercises
classes and object-oriented

programming, 478–481
computers and programming

introduction, 28–29
decision structures, 152–155
dictionaries and sets, 417–419
files and exceptions, 292–294
functions, 114–115
GUI programming, 564–565
inheritance, 506–507
input, processing, and output,

77–79
lists and tuples, 338–340
recursion, 526–527
repetition structures, 199–201
strings, 368–370
value-returning functions and

modules, 235–237
Exp() function, 227
Exponent (**) operator

defined, 54, 59
example use, 59–60
precedence, 57

F
Factorial function, 514–515
Factorials

calculation with recursion,
513–515

INDEX 599

definition rules, 513
function design, 514

Fetch-decode-execute cycle, 15
Fibonacci series

defined, 517–518
recursive function calculation,

518
Field widths

minimum, specifying, 71–72
in printing numbers aligned in

columns, 71
Fields. See also Records

defined, 264
illustrated, 264

File modes, 243
File objects

defined, 242
variable name referencing, 243

Filename extensions, 242
Files. See also Records

access methods, 241–242
appending data to, 252
binary, 241
closing, 241
contents, displaying, 280
cookie, 240
direct access, 242
end of, detecting, 257–259
input, 240–241
location specification, 244
module, 228
/n function in, 251
opening, 241, 243–244
output, 240
processing, 241
processing with loops,

256–263
reading data from, 241,

246–249
sequential access, 241–242
software storing data in,

239–240
temporary, 271
text, 241
types of, 241
use steps, 241
working with, 261–263,

325–328
writing data to, 240, 244–246

Finally clause, with
try/except statement, 288

Finally suite, 288
Find method, 357, 358
Flags, 149

Flash drives, 6
Flash memory, 6
Float data type, 47, 63–64
Float() function, 52, 53, 64
Floating-point division, 56
Floating-point notation, 12
Floating-point numbers, 72
Floor() function, 227
Floppy disk drives, 5
Flowcharts

decision structure, 122
defined, 34
diamond symbol, 118
dual alternative decision

structure, 126
end of file, 258
End terminal, 34
function, 89–90
function calls in loops, 167
illustrated, 35
input symbols, 34
input validation loop, 186
nested decision structure,

136, 139
nested loop, 191
output symbols, 34
processing symbols, 34
running total, 179
sequence structures nested

inside decision structure, 135
sequence structures with

decision structures, 134
Start terminal, 34
symbol types, 34
terminal symbols, 34
while loop, 159, 162

For loops. See also Loops
for clause, 168
as count-controlled loops,

167–178
defined, 167–168
designing, 174–176
examples of, 168, 169–170
iterating lists with, 298
iterating over dictionaries

with, 378–379
iterating over list of strings

with, 170
iterating over sets, 398
iterating over strings with,

342–344
iterations, 168–169
iterations, user control,

176–178

range function with, 170–172
reading lines with, 259–260
target variables, 169, 172

For statement, 168
Format function, 69, 72
Format specifiers

defined, 69
example, 69
minimum field width, 71–72

Formatting
with comma separators, 70
floating-point number as

percentage, 72
integers, 72–73
numbers, 68–69
in scientific notation, 70

FORTRAN, 17
Frame widget

defined, 532, 537, 538
object creation, 539
pack method, 539
uses, 538
widget organization with,

537–540, 551
Function calls

defined, 85
examples of, 86, 87
in flowcharts, 89
in loops, 166–167
modules and, 204, 230
nested, 52
process, 85–88
program control and, 88
recursive, 512

Function definitions
block, 84
defined, 83
function header, 84
general format, 84
writing, 84

Function headers, 84, 98
Functions
acos(), 227
arguments, 36, 97
asin(), 227
atan(), 227
Boolean, 223–224
callback, 540
called, 105
calling, 36, 85, 87, 88
ceil(), 227
change_me, 104–105
cos(), 227
defined, 36, 81

600 INDEX

Functions (continued)
defining, 84–85
degrees(), 227
display_data, 412
display_list, 450
for divide and conquer, 82
executing, 85
exp(), 227
factorial, 514–515
float(), 52, 53, 64
floor(), 227
flowcharting with, 89–90
format, 69, 72
get_name, 95
get_scores, 323, 324
get_values, 320
global variables in, 109
hypot(), 227
input, 49–50, 52
int(), 52, 53, 280
introduction to, 81–83
IPO charts, 218–219
is_even, 223
isinstance, 501–504
len, 375, 396
lens, 299, 346
library, 204
list(), 296, 334
load, 407, 408
log(), 227
log10(), 227
math module, 225, 227
max, 313–314
message, 86, 87, 90, 509–512
min, 313–314
modularizing, 219–222
names, 84
open, 243, 244
passing arguments to, 97–107
passing lists as arguments to,

319–320
print, 36–39, 45, 65–66, 296
radians(), 227
randint, 205–208
random, 205–206
randrange, 211–212
range, 170–172
range_sum, 516–517
recursive, 509–512
returning lists from, 320–322
returns, 85, 87, 88
save_data, 410
set, 395
show_double, 98–99

show_interest, 107
show_sum, 103
showinfo, 540
sin(), 227
sqrt(), 227
storing in modules, 228–232
str, 253
sum, 215, 216
tan(), 227
tuples(), 334
type, 47
uniform, 212
using, 82
value-returning, 203–225

G
GCD (greatest common divisor),

519–520
Generalization, 483–484
Get method, 379, 380, 544
Get_name function, 95
Get_scores function, 323, 324
Get_values function, 320
Getters, 447
Global constants

defined, 109
use example, 109–111
value, 109

Global keyword, 109
Global variables. See also

Variables
accessing, 107
creating, 108
debugging and, 108–109
defined, 107
examples of, 107–108
functions using, 109
program understanding and,

109
use restriction, 108–109

Graphical user interfaces (GUIs).
See also GUI programs

defined, 529, 530
dialog boxes, 530
graphical elements, 530
programming languages,

529–565
Greatest common divisor (GCD),

519–520
GUI programs
Button widgets, 540–543
check buttons, 558–560
creating, 531–534, 550
Entry widget, 543–546

as event-driven, 531
illustrated, 531
info dialog boxes, 540–543
input, getting, 543–546
Label widgets, 534–537
Label widgets as output

fields, 546–550
radio buttons, 554–557
text display, 534–537
with tkinter module,

531–534
widget list, 551
widget organization, 537–540
window, sketching, 550–551

H
Hardware, 2–6

components, 2–3
defined, 2

Hierarchy charts. See also
Program design

defined, 91
example, 92
illustrated, 91

High-level programming
languages, 16–17

Hypot() function, 227

I
IDLE. See Integrated development

environment
If statement. See also Decision

structures
Boolean expression testing, 120
execution, 119
general format, 119
nested blocks, 124–125
use example, 123–124
use of, 119

If-elif-else statement. See
also Decision structures

defined, 140
example, 141
general format, 140–141
logic, 141

If-else statement. See also
Decision structures

conditional execution in, 126
defined, 125
general format, 126
indentation, 127
nested, 145
nested blocks, 138
use example, 127–129

INDEX 601

Import statement
defined, 204
library functions and, 204
writing, 205

In operator
general format, 306
searching list items with,

306–307
testing dictionary values with,

373–374
testing set values with,

398–399
testing strings with, 353

Indentation
IDLE, automatic, 573–574
IDLE, default, 574
if-else statement, 127
illustrated, 88
methods, 89
nested decision structures, 137
in Python, 88–89

Index method
defined, 308
passing arguments to, 309
use example, 310

IndexError exception. See also
Exceptions

defined, 298
example code, 298–299
string indexes, 345

Indexes
defined, 298
invalid, 305, 350
with lists, 298–299
negative, 298, 305, 345, 350
position reference, 350
removing elements from, 313
in retrieving copy of

characters, 344
returning, 308, 309–311
in slicing expression, 304
string, 344–345
tuples support, 333

Indirect recursion, 516
Infinite loops, 165
Info dialog boxes

defined, 540
illustrated, 541, 543

Inheritance
defined, 483
generalization and, 483–484
“is a” relationship and,

484–492
specialization and, 483–484

subclass, 484
superclass, 484
in UML diagrams, 492–493
using, 493–497

__init__ method, 428, 437,
439, 486, 533

Initializer methods, 428
Input

in computer program process,
35–36

defined, 6
with Entry widget, 543–546
flowchart symbols, 34
reading from keyboard, 49–53
validation, 185, 186

Input devices, 6
Input files, 240–241
Input function, 49–50, 52
Input validation loops. See also

Loops
compound Boolean expressions

with, 187
defined, 185
as error traps/handlers, 187
logic, 186
priming read, 186
writing, 187–190

Insert method, 308, 311
Instances

attributes, 442
defined, 425
working with, 442–464

Instruction sets, 14
Instructions, 13–15
Int data type, 47, 64
Int() function, 52, 53, 280
Integer division, 56
Integers

formatting, 72–73
list of, 296
randint function return, 210
randrange function return,

212
Integrated development

environment (IDLE)
automatic indentation,

573–574
color coding, 573
defined, 23
indentation, 89
introduction to, 569–576
overview, 23–24
programming environment

execution, 567

Python Shell window, 569,
570, 575

Python Shell window output
display, 576

resources, 576
running programs in, 575–576
saving programs in, 574
shell window, 570
software bundling, 569
starting, 569–571
statement execution, 570
text editor, 23
tkinter module use, 532
writing Python programs in,

571–572
Interactive mode

defined, 21
incorrect statements in, 22
quitting interpreter in, 22
randint function and, 208
random numbers in, 208
using, 21–22

Interpreters
defined, 19
high-level program execution,

20
Python, 21
quitting, 22

Intersection method, 400
Intersection of sets, 400
IntVar class, 555
IOError exception, 281, 282,

283, 288
IPO charts

defined, 218
descriptions, 219
illustrated, 218
using, 218–219

“Is a” relationship
examples, 484
inheritance and, 484–492
objects, 484

Is_even function, 223
Isalnum() method, 354
Isalpha() method, 354
Isdigit() method, 354
Isinstance function

defined, 502
general format, 502
use example, 503–504
using, 501–504

Islower() method, 354
Isspace() method, 354
Issubset method, 402

602 INDEX

Issuperset method, 402
Isupper() method, 354
Item separators, 66–67
Items method, 379, 380–381
Iterables, 170
Iterations, loop

defined, 161
dictionaries, 378–379
flowchart, 162
nested loops, 192
over string, 342–344
sequence, generating, 178
sets, 398
user control, 176–178

J
Java, 17
JavaScript, 17

K
Key words

defined, 18
global, 109
list of, 18

Keyboard, reading input from,
49–53

KeyError exception, 375, 398
Keys. See also Dictionaries

defined, 371
dictionary views and, 381
different types of, 377
duplicate, 374
returning, 380–381
string, 372
types of, 372

Keys method, 379, 381
Key-value pairs

adding, 374
defined, 371
deleting, 375
as mappings, 372
removing, 382, 383
returning, 383

Keyword arguments
defined, 105
example, 105–106
mixing with positional

arguments, 107
order, 106

L
Label widget

creating, 539
defined, 532

as output field, 546–550
pack method, 535
stacked, 536
text display with, 534–537

Latin Subset of Unicode, 577
Len function, 375, 396
Lens function

defined, 299, 346
in iteration prevention, 346
in preventing IndexError

exception, 299
Library functions

as black boxes, 204
defined, 204
import statement and, 204

List() function, 296, 334
Listbox widget, 532
Lists

accepting as an argument,
313, 314

append method and, 307–309
concatenating, 301–302
contents, displaying, 331
converting iterable objects to,

296–297
converting to tuples, 334
copying, 314–316
defined, 168, 295, 296
of different types, 296
displaying, 296
as dynamic structures, 295
elements, 296
finding items in, 306–307
index method and, 309–311
indexing, 298–299
insert method and, 311
of integers, 296
items, adding, 307–309
items, in math expressions,

316–317
items, inserting, 311
items, removing, 312–313
items, reversing order of, 313
items, sorting, 311–312
items, summing range with

recursion, 516–517
iterating with for loop, 298
as mutable, 299–301
passing as argument to func-

tions, 319–320
processing, 316–328
remove method and, 312–313
returning from functions,

320–322

reverse method and, 313
slicing, 303–306
sort method and, 311–312
storing objects in, 448–450
of strings, 296
tuples versus, 332
two-dimensional, 328–332
values, totaling, 318
working with, 325–328
writing to files, 327

Literals
numeric, 46–47
string literals, 37, 38

Load function, 407, 408
Local variables. See also

Functions; Variables
access, 96
defined, 95
scope and, 95–97

Log() function, 227
log10() function, 227
Logic errors, 32
Logical operators
and, 142, 143
compound Boolean

expressions with, 142
defined, 142
not, 142, 144
numeric ranges with, 147–148
or, 142, 143–144
types of, 142

Loops
condition-controlled, 158–167
count-controlled, 158,

167–178
defined, 158
end of files and, 257–259
in file processing, 256–263
for, 167–178, 259–260,

378–379
function calls in, 166–167
infinite, 165
input validation, 185–190
iteration, 161
nested, 190–196
pretest, 162–163
priming read, 186
recursion versus, 512–513,

523
in running total calculation,

179–181
sentinels and, 182–185
validation, 224
while, 158–167

INDEX 603

Lower() method, 356
Low-level languages, 16
Lstrip() method, 356

M
Machine language, 14
Main memory

defined, 5
programs copied into,

14–15
Mammal class, 498–499
Math expressions

algebraic, 61–62
defined, 53
examples of, 58
list elements in, 316–317
mixed-type, 63–64
operands, 54
parentheses, grouping, 58
randint function in, 210
simplifying with value-returning

functions, 216–218
Math module

defined, 225
functions, 225, 227
variables, 227

Math operators
defined, 53
list of, 54

Max function, 313–314
Memory

buffer, 245
flash, 6
main memory, 4
random access (RAM), 5

Memory sticks, 6
Menu driven programs, 232
Menu widget, 532
Menubutton widget, 532
Menus, 232
Message function, 86, 87, 90,

509–512
Message widget, 532
Method overriding

for class methods, 498
defined, 498

Methods
accessor, 447
add, 396
append, 307–309
clear, 379–380, 398
close, 245, 408
convert, 549
data attributes and, 424

defined, 244, 422
dict(), 378
difference, 400
discard, 397
dump, 407
endswith, 357, 358
find, 357, 358
function of, 244
get, 379, 380, 544
index, 308, 309–311
__init__, 428, 437, 439,

486, 533
initializer, 428
insert, 308, 311
intersection, 400
isalnum(), 354
isalpha(), 354
isdigit(), 354
islower(), 354
isspace(), 354
issubset, 402
issuperset, 402
isupper(), 354
items, 379, 380–381
keys, 379, 381
list, 308
lower(), 356
lstrip(), 356
mutator, 447
pack, 535, 537, 539
pop, 379, 382
popitem, 379, 383
private, 424
public, 424
read, 246–247
readline, 247–248
readlines, 326
remove, 308, 312–313, 397
replace, 357, 358
reverse, 308, 313
rstrip, 251
rstrip(), 356
set, 550
sort, 308, 311–312
split, 363
startswith, 357, 358
__str__, 439–442
string, 353–358
strip(), 356
tuples and, 333
union, 399
update, 396
upper(), 356
values, 379, 383–384

write, 244–245
writelines, 328

Microprocessors
defined, 3
illustrated, 4

Min function, 313–314
Mixed-type expressions, 63–64
Mnemonics, 16
Modification methods,

356–357
Modifying records, 271–273
Modularization, 228
Modularized programs

defined, 82
with functions, 82–83

Module Docs, 567
Modules

benefits of, 228
circle, 228
contact, 457
defined, 204, 228
file name, 229
function, 219–222
function calls and, 204, 230
importing, 229
math, 225–227
pickle, 406–407
random, 205, 211
rectangle, 229
storing classes in, 435–437
storing functions in,

228–232
tkinter, 531–534
using, 229

Modulus operator. See
Remainder (%) operator

Multiple assignment, 383
Multiple items

displaying with + operator, 68
separating, 66–67

Multiplication (*) operator,
54, 57

Mutable, lists as, 299–301
Mutator methods, 447

N
Names, selecting, 43
Negative indexes, 298, 305,

345, 350
Nested blocks

defined, 124
example, 123–124
if-else statement, 138
illustrated, 125

604 INDEX

Nested decision structures
defined, 135
examples, 138–140
examples of, 136–137
flowchart, 136
indentation, 137
multiple, 138–140
use of, 135

Nested function calls, 52
Nested lists. See Two-dimensional

lists
Nested loops. See also Loops

defined, 190
example, 190–192
flowchart, 191
inner loop, 191, 192
iterations, total number of,

192
two-dimensional lists, 331
using to print patterns,

193–196
Newline (/n) character

concatenating to a string,
249–250

purpose inside files, 251
stripping from string,

250–252, 326
suppressing, 65–66

Not in operator
in list item determination, 307
testing dictionary values with,

373–374
testing set values with,

398–399
testing strings with, 353

Not operator
defined, 142
truth table, 144
use example, 144

Notepad, 22
Nouns

class representation, 468
identifying, 466–467
list, refining, 467–470
object representation, 469
plural versus singular, 469
value representation, 469

Numbers
advanced storage, 12
binary, 9–10
factorial of, 513–515
Fibonacci, 517
floating-point, 12
formatting, 68–69

pseudorandom, 212
random, 204–213
range of, testing for, 147–148
running totals, 179–181
sequence, generating, 178
storage, 9–11

Numeric data
reading, 253–255
writing, 253–255

Numeric literals, 46–47
Numeric ranges, with logical

operators, 147–148

O
Object state

defined, 439
displaying, 440

Object-oriented programming
(OOP)

class design, 464–475
classes, 425–442
data hiding, 422
defined, 422
encapsulation, 422
instances, 425, 442–464

Objects. See also Classes
characteristics description, 425
defined, 422
dictionary, 371–394
everyday example of,

423–424
exception, 285
file, 242–243
Frame, 539
“is a” relationship, 484
list, 295, 296
passing as arguments,

450–451
pickling, 452–454
reusability, 423
sequence, 295
serializing, 406–412
set, 394–406
storing in dictionaries,

454–464
storing in lists, 448–450
StringVar, 546–547
unpickling, 453–454

OK buttons, 540, 557
Open function, 243, 244
Opening files, 241, 243–244
Operands, 54
Operating systems, 6
Operators

addition (+), 54, 57
and, 142, 143
assignment, 121
augmented assignment,

181–182
defined, 18
division (/), 54, 56
exponent (**), 54, 59–60
in, 306–307
integer division (//), 54, 56
logical, 142–148
math, 53, 54
multiplication (*), 54
not, 142, 144
or, 142, 143–144
precedence, 57–58
relational, 119–121
remainder (%), 54, 60–61,

223
repetition, 297
subtraction (-), 54

Optical devices, 6
Or operator

defined, 142
short-circuit evaluation, 144
true, 144
truth table, 143
use example, 143

Output
in computer program process,

35–36
data, 65–73
defined, 6
displaying, 35–36
flowchart symbols, 34

Output devices, 6
Output files

defined, 240
opening in append mode,

252
Overhead, 512
Overriding, method, 498

P
Pack method, 535, 537, 539
Parameter lists, 102
Parameters

defined, 97, 98
making changes to, 103–105
referencing argument value,

103
scope, 99

Parentheses, grouping, 58
Pascal, 17

INDEX 605

Passing arguments. See also
Arguments

example, 100–101
to index method, 309
list as function, 319–320
multiple, 101–103
objects, 450–451
by position, 102
to range function, 171–172
by value, 105

Passwords, validating characters
in, 358–361

Path variable, 568
Patterns, printing with nested

loops, 193–196
Percentages, calculations,

55–56
Pi variable, 227
Pickle module, 406–407
Pickling

defined, 406
objects, 452–454
saving objects, 407

Pixels, 12
Polymorphism

behavior, 498
defined, 498
isinstance function,

501–504
use examples, 501–502,

503–504
Pop method, 379, 382
Popitem method, 379, 383
Positional arguments, 107
Precedence, operator, 57
Pretest loops

defined, 162
while loops as, 162–163

Priming reads, 186, 258
Print function

for displaying lists, 296
ending newline suppression,

65–66
multiple item display with, 45
output display with, 36–39

Private methods, 424
Problem domain

defined, 466
nouns/noun phrases in,

466–467
writing description of, 466

Problem solving
base case, 513
with loops, 512

with recursion, 512–516
recursive case, 513

Procedural programming
defined, 421
focus of, 421
object-oriented programming

versus, 422
Procedures, 421
Processing files, 241
Processing lists, 316–328
Processing symbols, 34
Program design, 31–35

in development cycle,
31–32

flowcharts, 34–35, 89–90
with functions, 89–94
hierarchy charts, 91
with for loops, 174–176
pseudocode, 34
steps, 32
task breakdown, 33
top-down, 90–91
with while loops, 163–165

Program development cycle
defined, 31
illustrated, 31
steps, 31–32

Programmers
comments, 38–39
customer interview, 33
defined, 1
task breakdown, 33–34
task understanding, 32

Programming
GUI, 529–565
in machine language, 15–16
object-oriented (OOP),

422–481
procedural, 421–422
with Python language, 2–3

Programming languages.
See also Python

Ada, 17
assembly, 15
BASIC, 17
C#, 17
C/C++, 17
COBOL, 17
FORTRAN, 17
high-level, 16–17
Java, 17
JavaScript, 17
low-level, 16
Pascal, 17

Ruby, 17
Visual Basic, 17

Programs
assembly language, 16
compiling, 18–19
control, transfer, 88
copied into main memory,

14–15
defined, 1
exceptions, 276–289
execution, pausing, 94
flowcharting with functions,

89–90
functioning of, 13–20
image editing, 2
menu driven, 232
modularized, 82–83
record storage, 267
running, 3, 575–576
saving, 574
storage, 14
testing, 32
utility, 7
word processing, 2
writing in IDLE editor,

571–572
Programs (this book)
in_list.py, 306–307
account_demo.py, 496–497
account_test2.py,

441–442
account_test.py, 438–439
accounts.py, 494, 495
acme_dryer.py, 93–94
add_coffee_record.py,

267–268
animals.py, 498–499, 500
auto_repair_payroll.py,

128–129
average_list.py, 319
bad_local.py, 95
bankaccount2.py, 440–441
bankaccount.py, 437
barista_pay.py, 316–317
birds.py, 96–97
birthdays.py, 388–393
button_demo.py, 540–541
car_demo.py, 488–489
car_truck_suv_demo.py,

491–492
card_dealer.py, 385–387
car.py, 473
cell_phone_list.py,

448–450

606 INDEX

Programs (continued)
cell_phone_test.py,

446–447
cellphone.py, 445–446
change_me.py, 103–104
checkbutton_demo.py,

558–560
circle.py, 228–229
coin_argument.py, 451
coin_demo1.py, 429–430
coin_demo2.py, 432–433
coin_demo3.py, 433–435
coin_demo4.py, 436
coin_demo5.py, 443
coin_toss.py, 210–211
coin.py, 435–436
columns.py, 71–72
commission_rate.py,

220–222
commission2.py, 166
commission.py, 160
concatenate.py, 347–348
contact_manager.py,

456–463
contact.py, 455
count_Ts.py, 344
cups_to_ounces.py,

100–101
customer.py, 472
delete_coffee_record.py,

274–275
dice.py, 209
display_file2.py, 281–282
display_file.py, 280–281
division.py, 276–277
dollar_display.py, 70–71
drop_lowest_score.py,

322–325
empty_window1.py, 532–533
empty_window2.py,

533–534
endless_recursion.py,

509–510
fibonacci.py, 518–519
file_read.py, 246–248
file_write.py, 245
formatting.py, 69
frame_demo.py, 538–539
function_demo.py, 85
gcd.py, 519–520
generate_login.py,

351–352
geometry.py, 230–232
global1.py, 107–108

global2.py, 108
grader.py, 139–140
gross_pay1.py, 278
gross_pay2.py, 279–280
gross_pay3.py, 285–286
gross_pay.py, 185
hello_world2.py, 536
hello_world3.py, 536–537
hello_world.py, 534–535
hypotenuse.py, 226–227
index_list.py, 310
infinite.py, 165
input.py, 52–53
keyword_args.py, 105–106
keywordstringargs.py, 106
kilo_converter2.py,

547–549
kilo_converter.py,

544–546
list_append.py, 308–309
loan_qualifier2.py,

144–145
loan_qualifier3.py,

146–147
loan_qualifier.py,

136–137
login.py, 350–351, 359–361
modify_coffee_records.py,

272–273
multiple_args.py, 101–102
no_formatting.py, 68–69
pass_arg.py, 98
password.py, 130
pickle_cellphone.py,

452–453
pickle_objects.py,

408–410
polymorphism_demo2.py,

503–504
polymorphism_demo.py,

501–502
property_tax.py, 183–184
quit_button.py, 542–543
radiobutton_demo.py,

555–556
random_numbers2.py,

206–207
random_numbers.py, 206,

331
read_emp_records.py,

266–267
read_list.py, 326–327
read_number_list.py, 328
read_number.py, 255

read_running_times.py,
262–263

read_sales2.py, 259
read_sales.py, 259
rectangle.py, 229
rectangular_pattern.py,

194–195
repetition_operator.py,

362–363
retail_no_validation.py,

188
retail_with_validation.py,

189–190
retirement.py, 110–111
return_list.py, 319–320
sale_price.py, 55–56,

217–218
sales_list.py, 300–301
sales_report1.py, 283
sales_report2.py, 284–285
sales_report3.py, 286
sales_report4.py, 287–288
save_emp_records.py,

264–265
save_running_times.py,

261–262
search_coffee_records.py,

270–271
servicequote.py, 474–475
sets.py, 403–405
show_coffee_records.py,

268–269
simple_loop1.py, 168
simple_loop2.py, 169–170
simple_loop3.py, 170
simple_loop4.py, 171
simple_math.py, 54–55
sort_names.py, 133
speed_converter.py,

175–176
split_date.py, 364
square_root.py, 226
squares.py, 172–173
stair_step_pattern.py, 195
string_args.py, 103
string_input.py, 50
string_split.py, 363
string_test.py, 355
string_variable.py, 48
strip_newline.py, 251–252
sum_numbers.py, 180
temperature.py, 164–165
test_average.py, 123–124
test_averages.py, 552–554

INDEX 607

test_score_average.py, 59
test_score_averages.py,

192–193
time_converter.py, 60–61
total_ages.py, 215
total_function.py, 320
total_list.py, 318
towers_of_hanoi.py,

522–523
triangle_pattern.py, 195
two_functions.py, 86
unpickle_cellphone.py,

453–454
unpickle_objects.py,

410–412
user_squares1.py, 176–177
user_squares2.py, 177–178
validate_password.py, 361
variable_demo2.py, 42
variable_demo3.py, 45
variable_demo4.py, 45–46
variable_demo.py, 42
vehicles.py, 485–486, 487,

489, 490
write_list.py, 326
write_names.py, 250
write_number_list.py, 327
write_numbers.py, 253
write_sales.py, 256–257
writelines.py, 325
wrong_type.py, 501–502

Pseudocode, 34
Pseudorandom numbers, 212
Public methods, 424
Python

defined, 17
directory, adding to Path

variable, 568
IDLE, 23–24, 569
installing, 20, 567
interactive mode, 21–22
interpreter, 19, 21
interpreter, executing, 568
interpreter, statement

execution by, 571
key words, 18
in learning programming, 1–2
operators, 18
script mode, 22–23
Shell window, 569, 570, 575
uninstalling, 567

Python Manuals, 567
Python programs

group, 567

running, 23
writing in IDLE editor,

571–572
writing in script mode, 22–23

Q
Quit button, 542–543, 544

R
Radians() function, 227
Radio buttons

defined, 554
illustrated, 554
use example, 555–557
uses, 554

Radiobutton widget
callback functions with, 557
creation and use example,

555–556
defined, 532
as mutually exclusive, 555

Randint function
calling, 205
defined, 205
in interactive mode, 208
in math expression, 210
random number generation,

207
return value, 206
use examples, 207–208

Random access files, 242
Random access memory (RAM), 5
Random module, 205, 211
Random numbers

displaying, 207
example uses, 204–205
experimenting in interactive

mode, 208
generating, 204–208
pseudo, 212
to represent other values,

210–211
seeds, 212–213
using, 208–209

Randrange function
defined, 211
example uses, 211–212
return, 212

Range function
arguments passed to, 171–172
default, 171
iterable object, converting to

list, 296–297
with for loop, 170–172

in number sequence
generation, 178

Range_sum function, 516–517
Raw strings, 244
Read, priming, 186, 258
Read method, 246–247
Read position

advance to the next line,
248, 249

defined, 248
initial, 248

Reading
data from files, 241, 246–249
files with loops, 257–259
with for loop, 259–260
numbers from text files, 254
numeric data, 253–255
records, 265
strings, and stripping newline,

250–252
Readline method

defined, 247
empty string return, 258
example use, 247–248
reading strings from files with,

255
return, 247, 249

Readlines method, 326
Records

adding, 267–268
defined, 263
deleting, 274–275
displaying, 268–269
fields, 264
modifying, 271–273
processing, 263–276
programs storing, 267
reading from sequential access

files, 265
searching, 269–271
writing to sequential access

files, 264
Recursion

depth of, 512
direct, 516
in factorial calculation,

513–515
indirect, 516
loops versus, 512–513, 523
problem solving with,

512–516
stopping of, 515
summing range of list elements

with, 516–517

608 INDEX

Recursive algorithms
designing, 513
efficiency, 512
examples of, 516–523
Fibonacci series, 517–519
greatest common divisor,

519–520
problem reduction with each

recursive call, 515
summing range of list ele-

ments, 516–517
Towers of Hanoi, 520–523

Recursive case, 513
Recursive functions

call, 512
defined, 509
efficiency, 523
example, 509–512
Fibonacci series calculation,

518
functioning of, 513
overhead, 512

Relational operators
Boolean expressions using,

120
defined, 120
in string comparisons, 132
types of, 120

Remainder (%) operator
defined, 54, 60
precedence, 57
use example, 60–61

Remove method, 308, 312–313,
397

Repetition operator (*)
defined, 297
general format, 297, 362
for lists, 297
for strings, 362–363
use example, 362–363

Repetition structures. See also
Loops

defined, 157, 158
example, 157–158
introduction to, 157–158

Replace method, 357, 358
Reserved words. See Key words
Return statement

defined, 214
form, 214
result variable and, 216
using, 216

Returning
Boolean values, 223–224

dictionary values, 382,
383–384

key-value pairs, 383
lists from functions, 320–322
multiple values, 224–225
strings, 222

Reverse method, 308, 313
Review questions

classes and object-oriented
programming, 475–478

computers and programming
introduction, 24–27

decision structures, 150–152
dictionaries and sets, 412–417
files and exceptions, 289–292
functions, 111–114
GUI programming, 561–563
inheritance, 504–506
input, processing, and output,

73–77
lists and tuples, 335–338
recursion, 524–526
repetition structures, 197–199
strings, 365–367
value-returning functions and

modules, 232–234
Rounding, 56
Rstrip method, 251
Rstrip() method, 356
Ruby, 17
Running programs, 575–576
Running totals

calculating, 179–181
defined, 179
elements for calculating, 179
example, 180
logic for calculating, 179

S
Samples, 13
Save_data function, 410
Saving programs, 574
SavingsAccount class, 494, 495
Scale widget, 532
Scientific notation, 70
Scope

defined, 95
local variables and, 95–97
parameter variable, 99

Script mode, running programs
in, 23

Scrollbar widget, 532
Searching

lists, 306–307

records, 269–271
strings, 357–358

Secondary storage
defined, 5
devices, 5–6

Seed value, 212
Seeds, random number, 212–213
Selection structures. See Decision

structures
Sentinels

defined, 182, 183
using, 183–185
values, 182–183

Separators
comma, 70–71
item, 66–67
split method, 364

Sequence structures
combining with decision

structure, 134
defined, 117
example, 117
nested inside decision

structure, 135
use in programming, 118

Sequences. See also Lists
accepting as an argument,

313, 314
defined, 295
length, returning, 299
tuples, 332–334

Sequential access files
defined, 241–242
modifying records in, 271
reading records from, 265
working with, 273, 276
writing records to, 264

Serializing objects
defined, 406
example, 408–410, 452–453
pickle module, 406–407
unserializing, 410–412,

453–454
ServiceQuote class, 473–475
Set function, 395
Set method, 550
Sets

creating, 395
defined, 394
difference of, 400–401
elements, adding, 396–397
elements, as unique, 394
elements, duplicate, 395
elements, number of, 396

INDEX 609

elements, removing, 397–398
intersection of, 400
for loop iteration over, 398
operations, 403–405
subsets, 402
supersets, 402
symmetric difference of, 401
union of, 399
as unordered, 394
values, testing, 398–399

Settings. See Mutator methods
Show_double function, 98–99
Show_interest function, 107
Show_sum function, 103
Showinfo function, 540
Sin() function, 227
Single alternative decision

structures, 118
Slices

defined, 303
example use, 303–305
general format, 303
invalid indexes and, 305
list, 303–306
start and end index, 304
string, 349–350

Software
application, 7
defined, 1
developers. see programmers
development tools, 7
requirements, 33
system, 6–7
types of, 6

Sort method and, 308,
311–312

Sorting, list items, 311–312
Source code. See Code
Specialization, 483–484
Split method, 363
Splitting strings, 363–364
Sqrt() function, 227
Startswith method, 357, 358
Statements

in blocks, 84
breaking into multiple lines,

64–65
converting math formulas to,

61–63
defined, 18
del, 313
for, 168
if, 119
import, 204

return, 214–216
try/except, 276, 278–279,

287
Step values, 171
Str data type, 47–48
Str function

defined, 253
example use, 253

__str__ method, 439–442
String concatenation

with + operator, 68
with += operator, 347
defined, 68, 346
example, 68
interactive sessions, 346
newline to, 249–250

String literals
defined, 37
enclosing in triple quotes, 38

Strings
characters, accessing, 342–346
comparing, 130–134
defined, 37
extracting characters from,

350–352
as immutable, 347–348
indexes, 344–345
iterating with for loop,

342–344
list of, 296
method call format, 354
modification methods,

356–357
operations, 341–348
raw, 244
reading as input, 341
repetition operator (*) with,

362–363
returning, 222
search and replace methods,

357–358
slicing, 349–350
space character at end, 51
splitting, 363–364
storing with str data type,

47–48
stripping newline from,

250–252
testing, 353
testing methods, 354–355
writing as output, 341
written to files, 246

StringVar object, 546–547
Strip() method, 356

Stripping newline from string,
250–252

Structure charts. See Hierarchy
charts

Subclasses
defined, 484
as derived classes, 484
method override, 498
polymorphism, 498–504
writing, 485

Subscripts, 330
Subsets, 402
Subtraction (-) operator

defined, 54
precedence, 57

Sum function, 215, 216
Superclasses

as base classes, 484
defined, 484
in UML diagrams, 492
writing, 485

Supersets, 402
SUV class, 490–491
Symbols, flowchart, 34
Symmetric difference of sets, 401
Symmetric_difference

method, 401
Syntax

defined, 18
human language, 20

Syntax errors
correcting, 32
defined, 19
reporting, 576
running programs and, 576

System software, 6–7

T
Tan() function, 227
Target variables

defined, 169
inside for loops, 172
use example, 175–176

Terminal symbols, 34
Testing

dictionary values, 373–374
programs, 32
set values, 398–399
string methods, 354
strings, 353

Text
displaying with Label widget,

534–537
editing, 571–572

610 INDEX

Text files
defined, 241
reading numbers from, 254

Text widget, 532
Tkinter module

defined, 531
programs using, 532
widgets, 532

Top-down design
defined, 90
process, 90–91

Toplevel widget, 532
Totals

list values, 318
running, 179–181

Towers of Hanoi. See also
Recursive algorithms

base case, 522
defined, 520
illustrated, 520
problem solution, 521–522
program code, 522–523
steps for moving pegs, 521

Tracebacks, 277
Truck class, 489–490
Truncation, in integer division,

56
Truth tables
not operator, 144
and operator, 143
or operator, 143

Try/except statement
else clause, 287–288
execution of, 279
finally clause, 288
handing exceptions with, 276,

278–279
one except clause, 284–285
use example, 279–280

Tuples
converting to lists, 334
creating, 333
defined, 332
dictionary views, 380
indexing, 333
lists versus, 332
methods and, 333
operations support, 333
performance and, 334
safety, 334

Tuples() function, 334
Two-dimensional lists. See also

Lists
defined, 328, 329

elements for calculating,
328–329

illustrated, 329, 330
subscripts, 330
use example, 331
uses, 329

Two’s complement, 12
Type function, 47

U
UML diagrams
Car class, 473
CellPhone class, 465
Coin class, 465
Customer class, 471
inheritance in, 492–493
layout, 465
ServiceQuote class, 474

Unicode, 12
Unified Modeling Language

(UML), 464
Union method, 399
Union of sets, 399
Update method, 396
Upper() method, 356
USB drives, 5–6
User interfaces

command line, 529–530
defined, 529
graphical user (GUIs),

529–565
Utility programs, 7

V
Validation

code, Boolean functions in,
224

input, 185
password characters, 358–361

ValueError exception,
285–286, 288, 312

Value-returning functions
benefits, 216
defined, 203
general format, 214
how to use, 216–218
IPO charts, 218–219
parts of, 214
randint, 205–208
random number, 204–213
randrange, 211–212
return statement, 214–216
returning multiple values,

224–225

simple function similarities,
203

for simplifying mathematical
expressions, 216–218

uniform, 212
values, 203, 216
writing, 214–225

Values
Boolean, 223–224
data attribute, 424
global constants, 109
key mapping to, 372
list, averaging, 318–319
list, totaling, 318
multiple, returning, 224–225
noun representation, 469
passing arguments by, 105
random numbers to represent,

210–211
range of, 147–148
seed, 212
sentinel, 182–183
step, 171
value-returning functions,

203, 216
Values, dictionary

defined, 371
in dictionary creation, 372
different types of, 376–377
getting, 380
retrieving, 372–373
returning, 382, 383–384
testing, 373–374

Values method, 379, 383–384
Variables

Boolean, 149
creating with assignment

statements, 40–43
defined, 40, 45
global, 107–109
local, 95–97
math module, 227
names, sample, 44
naming rules, 43–44
parameter. see parameters
Path, 568
reassignment, 45–46
reassignment to different type,

48
scope, 95
target, 169, 172
value assignment warning, 43
value representation, 40

Visual Basic, 17

INDEX 611

W
While loops. See also Loops

as condition-controlled loops,
158–167

designing programs with,
163–165

end of file, 258
example, 160–161
execution of, 159
flowchart, 162
function calls in, 166–167
functioning of, 159
general format, 159
illustrated, 161
logic, 159
as pretest loops, 162–163
while clause, 159

Widgets
arrangement of, 540

Button, 532, 540–543
Canvas, 532
Checkbutton, 532, 558–560
defined, 532
Entry, 532, 543–546
Frame, 532
Label, 532, 534–537
list of, 551
Listbox, 532
Menu, 532
Menubutton, 532
Message, 532
organizing with Frames,

537–540, 551
Radiobutton, 532, 555–557
Scale, 532
Scrollbar, 532
Text, 532
tkinter module, 532

Toplevel, 532
Windows 7, 568
Windows Vista, 568
Windows XP, 568
Write method

defined, 244
format for calling, 244–245

Writelines method, 325
Writing

code, 32
data to files, 240, 244–246
numeric data, 253–255
programs in IDLE editor,

571–572
records, 264

Z
ZeroDivisionError exception,

288

This page intentionally left blank

Credits

Figure 1.2a pg.3 © Shutterstock “Digital webcam in a white background with reflection”

Figure 1.2b pg. 3 © Shutterstock “Modern flight joystick isolated on white background”

Figure 1.2c pg. 3 © Shutterstock “Scanner close up shot, business concept”

Figure 1.2d pg. 3 © Shutterstock “Black Wireless Computer Keyboard and Mouse Isolated on White”

Figure 1.2e pg.3 © Shutterstock “compact photo camera”

Figure 1.2f pg.3 © Shutterstock “Computer drawing tablet with pen”

Figure 1.2g pg. 3 © Shutterstock “Illustration of Hard disk drive HDD isolated on white background with soft shadow”

Figure 1.2h pg. 3 © Shutterstock “Small computer speakers isolated on a white background”

Figure 1.2i pg. 3 © Shutterstock “Color Printer”

Figure 1.2j pg. 3 © Shutterstock “Four monitors.”

Figure 1.2k pg. 3 © Shutterstock “Stick of computer random access memory (RAM)”.

Figure 1.2l pg. 3 © Shutterstock. “Central processing unit”.

Figure 1.3 pg. 4 Courtesy of US Army Historic Computer Images

Figure 1.4 pg. 4 Courtesy of Intel Corporation “Intel chip”.

Figure 1.5 pg. 5 © Shutterstock. “Computer Memory”.

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Chapter 1 Introduction to Computers and Programming
	1.1 Introduction
	1.2 Hardware and Software
	1.3 How Computers Store Data
	1.4 How a Program Works
	1.5 Using Python

	Chapter 2 Input, Processing, and Output
	2.1 Designing a Program
	2.2 Input, Processing, and Output
	2.3 Displaying Output with the print Function
	2.4 Comments
	2.5 Variables
	2.6 Reading Input from the Keyboard
	2.7 Performing Calculations
	2.8 More About Data Output

	Chapter 3 Simple Functions
	3.1 Introduction to Functions
	3.2 Defining and Calling a Function
	3.3 Designing a Program to Use Functions
	3.4 Local Variables
	3.5 Passing Arguments to Functions
	3.6 Global Variables and Global Constants

	Chapter 4 Decision Structures and Boolean Logic
	4.1 The if Statement
	4.2 The if-else Statement
	4.3 Comparing Strings
	4.4 Nested Decision Structures and the if-elif-else Statement
	4.5 Logical Operators
	4.6 Boolean Variables

	Chapter 5 Repetition Structures
	5.1 Introduction to Repetition Structures
	5.2 The while Loop: a Condition-Controlled Loop
	5.3 The for Loop: a Count-Controlled Loop
	5.4 Calculating a Running Total
	5.5 Sentinels
	5.6 Input Validation Loops
	5.7 Nested Loops

	Chapter 6 Value-Returning Functions and Modules
	6.1 Introduction to Value-Returning Functions: Generating Random Numbers
	6.2 Writing Your Own Value-Returning Functions
	6.3 The math Module
	6.4 Storing Functions in Modules

	Chapter 7 Files and Exceptions
	7.1 Introduction to File Input and Output
	7.2 Using Loops to Process Files
	7.3 Processing Records
	7.4 Exceptions

	Chapter 8 Lists and Tuples
	8.1 Sequences
	8.2 Introduction to Lists
	8.3 List Slicing
	8.4 Finding Items in Lists with the in Operator
	8.5 List Methods and Useful Built-in Functions
	8.6 Copying Lists
	8.7 Processing Lists
	8.8 Two-Dimensional Lists
	8.9 Tuples

	Chapter 9 More About Strings
	9.1 Basic String Operations
	9.2 String Slicing
	9.3 Testing, Searching, and Manipulating Strings

	Chapter 10 Dictionaries and Sets
	10.1 Dictionaries
	10.2 Sets
	10.3 Serializing Objects

	Chapter 11 Classes and Object-Oriented Programming
	11.1 Procedural and Object-Oriented Programming
	11.2 Classes
	11.3 Working with Instances
	11.4 Techniques for Designing Classes

	Chapter 12 Inheritance
	12.1 Introduction to Inheritance
	12.2 Polymorphism

	Chapter 13 Recursion
	13.1 Introduction to Recursion
	13.2 Problem Solving with Recursion
	13.3 Examples of Recursive Algorithms

	Chapter 14 GUI Programming
	14.1 Graphical User Interfaces
	14.2 Using the tkinter Module
	14.3 Display Text with Label Widgets
	14.4 Organizing Widgets with Frames
	14.5 Button Widgets and Info Dialog Boxes
	14.6 Getting Input with the Entry Widget
	14.7 Using Labels as Output Fields
	14.8 Radio Buttons and Check Buttons

	Appendix A: Installing Python
	Appendix B: Introduction to IDLE
	Appendix C: The ASCII Character Set
	Appendix D: Answers to Checkpoints
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

